Арыгінальны файл(файл SVG, намінальна 800 × 600 кропак, аб’ём файла: 156 KB)

Гэты файл з на Вікісховішчы і можа выкарыстоўвацца іншымі праектамі. Апісанне на яго старонцы ў Wikimedia Commons прыведзена ніжэй.

Тлумачэнне

Апісанне
English: Electric field around a large and a small conducting sphere at opposite electric potential. The shape of the field lines is computed exactly, using the method of image charges with an infinite series of charges inside the two spheres. Field lines are always orthogonal to the surface of each sphere. In reality, the field is created by a continuous charge distribution at the surface of each sphere, indicated by small plus and minus signs. The electric potential is depicted as background color with yellow at 0V.
Дата
Крыніца Уласная праца
Аўтар Geek3
Іншыя версіі
SVG genesis
InfoField
 
The source code of this SVG is invalid due to VectorFieldPlot errors.
 
Гэты файл (вектарная выява) быў створаны з дапамогай Inkscape, or with something else.
 
This file uses embedded text.

العربية  جازايرية  беларуская  беларуская (тарашкевіца)  български  বাংলা  català  čeština  Cymraeg  Deutsch  Schweizer Hochdeutsch  Zazaki  Ελληνικά  English  Esperanto  español  eesti  euskara  فارسی  suomi  français  galego  עברית  हिन्दी  hrvatski  magyar  հայերեն  Bahasa Indonesia  italiano  日本語  Jawa  ქართული  한국어  kurdî  Lëtzebuergesch  lietuvių  македонски  മലയാളം  मराठी  Bahasa Melayu  Nederlands  Norfuk / Pitkern  polski  português  português do Brasil  rumantsch  română  русский  sicilianu  slovenčina  slovenščina  shqip  српски / srpski  svenska  தமிழ்  తెలుగు  ไทย  Tagalog  Türkçe  toki pona  українська  vèneto  Tiếng Việt  中文  中文(简体)  中文(繁體)  +/−

Крынічны код
InfoField

SVG code

# paste this code at the end of VectorFieldPlot 1.10
# https://commons.wikimedia.org/wiki/User:Geek3/VectorFieldPlot
u = 100.0
doc = FieldplotDocument('VFPt_metal_balls_largesmall_potential',
    commons=True, width=800, height=600, center=[400, 300], unit=u)

# define two spheres with position, radius and charge
s1 = {'p':sc.array([-1.0, 0.]), 'r':1.5}
s2 = {'p':sc.array([2.0, 0.]), 'r':0.5}

# make charge proportional to capacitance, which is proportional to radius.
s1['q'] = s1['r']
s2['q'] = -s2['r']
d = vabs(s2['p'] - s1['p'])
v12 = (s2['p'] - s1['p']) / d

# compute series of charges https://dx.doi.org/10.2174/1874183500902010032
charges = [[s1['p'][0], s1['p'][1], s1['q']], [s2['p'][0], s2['p'][1], s2['q']]]
r1 = r2 = 0.
q1, q2 = s1['q'], s2['q']
q0 = max(fabs(q1), fabs(q2))
for i in range(10):
    q1, q2 = -s1['r'] * q2 / (d - r2), -s2['r'] * q1 / (d - r1), 
    r1, r2 = s1['r']**2 / (d - r2), s2['r']**2 / (d - r1)
    p1, p2 = s1['p'] + r1 * v12, s2['p'] - r2 * v12
    charges.append([p1[0], p1[1], q1])
    charges.append([p2[0], p2[1], q2])
    if max(fabs(q1), fabs(q2)) < 1e-3 * q0:
        break

field = Field({'monopoles':charges})

# draw potential in background
p_array = sc.array([c[:2] for c in charges])
q_array = sc.array([c[2] for c in charges])
def potential(xy):
    return sc.dot(q_array, 1. / sc.linalg.norm(xy - p_array, axis=1))

from matplotlib import colors
# colormap from aqua through yellow to fuchsia
cmap = colors.ListedColormap([sc.clip((2*x, 2*(1-x), 4*(x-0.5)**2), 0, 1)
    for x in sc.linspace(0., 1., 2048)])

doc.draw_scalar_field(func=potential, cmap=cmap,
    vmin=potential(s2['p'] + s2['r'] * sc.array([1., 0.])),
    vmax=potential(s1['p'] + s1['r'] * sc.array([-1., 0.])))

# draw symbols
for c in charges:
    doc.draw_charges(Field({'monopoles':[c]}), scale=0.6*sqrt(fabs(c[2])))

gradr = doc.draw_object('linearGradient', {'id':'rod_shade', 'x1':0, 'x2':0,
    'y1':0, 'y2':1, 'gradientUnits':'objectBoundingBox'}, group=doc.defs)
for col, of in (('#666', 0), ('#ddd', 0.6), ('#fff', 0.7), ('#ccc', 0.75),
    ('#888', 1)):
    doc.draw_object('stop', {'offset':of, 'stop-color':col}, group=gradr)
gradb = doc.draw_object('radialGradient', {'id':'metal_spot', 'cx':'0.53',
    'cy':'0.54', 'r':'0.55', 'fx':'0.65', 'fy':'0.7',
    'gradientUnits':'objectBoundingBox'}, group=doc.defs)
for col, of in (('#fff', 0), ('#e7e7e7', 0.15), ('#ddd', 0.25),
    ('#aaa', 0.7), ('#888', 0.9), ('#666', 1)):
    doc.draw_object('stop', {'offset':of, 'stop-color':col}, group=gradb)

ball_charges = []
for ib in range(2):
    ball = doc.draw_object('g', {'id':'metal_ball{:}'.format(ib+1),
        'transform':'translate({:.3f},{:.3f})'.format(*([s1, s2][ib]['p'])),
        'style':'fill:none; stroke:#000;stroke-linecap:square', 'opacity':1})
    
    # draw rods
    if ib == 0:
        x1, x2 = -4.1 - s1['p'][0], -0.9 * s1['r']
    else:
        x1, x2 = 0.9 * s2['r'], 4.1 - s2['p'][0]
    doc.draw_object('rect', {'x':x1, 'width':x2-x1,
        'y':-0.1/1.2+0.01, 'height':0.2/1.2-0.02,
        'style':'fill:url(#rod_shade); stroke-width:0.02'}, group=ball)
    
    # draw metal balls
    doc.draw_object('circle', {'cx':0, 'cy':0, 'r':[s1, s2][ib]['r'],
        'style':'fill:url(#metal_spot); stroke-width:0.02'}, group=ball)
    ball_charges.append(doc.draw_object('g',
        {'style':'stroke-width:0.02'}, group=ball))

# find well-distributed start positions of field lines
def get_startpoint_function(startpath, field):
    '''
    Given a vector function startpath(t), this will return a new
    function such that the scalar parameter t in [0,1] progresses
    indirectly proportional to the orthogonal field strength.
    '''
    def dstartpath(t):
        return (startpath(t+1e-6) - startpath(t-1e-6)) / 2e-6
    def FieldSum(t0, t1):
        return ig.quad(lambda t: sc.absolute(sc.cross(
            field.F(startpath(t)), dstartpath(t))), t0, t1)[0]
    Ftotal = FieldSum(0, 1)
    def startpos(s):
        t = op.brentq(lambda t: FieldSum(0, t) / Ftotal - s, 0, 1)
        return startpath(t)
    return startpos

startp = []
def startpath1(t):
    phi = 2. * pi * t
    return (sc.array(s2['p']) + 1.5 * sc.array([cos(phi), sin(phi)]))
start_func1 = get_startpoint_function(startpath1, field)
nlines1 = 16
for i in range(nlines1):
    startp.append(start_func1((0.5 + i) / nlines1))

def startpath2(t):
    phi = 2. * pi * (0.195 + 0.61 * t)
    return (sc.array(s1['p']) + 1.5 * sc.array([cos(phi), -sin(phi)]))
start_func2 = get_startpoint_function(startpath2, field)
nlines2 = 14
for i in range(nlines2):
    startp.append(start_func2((0.5 + i) / nlines2))

# draw the field lines
for p0 in startp:
    line = FieldLine(field, p0, directions='both', maxr=7.)
    
    # draw little charge signs near the surface
    path_minus = 'M {0:.5f},0 h {1:.5f}'.format(-2./u, 4./u)
    path_plus = 'M {0:.5f},0 h {1:.5f} M 0,{0:.5f} v {1:.5f}'.format(-2./u, 4./u)
    for si in range(2):
        sphere = [s1, s2][si]
        
        # check if fieldline ends inside the sphere
        for ci in range(2):
            if vabs(line.get_position(ci) - sphere['p']) < sphere['r']:
                # find the point where the field line cuts the surface
                t = op.brentq(lambda t: vabs(line.get_position(t)
                    - sphere['p']) - sphere['r'], 0., 1.)
                pr = line.get_position(t) - sphere['p']
                cpos = 0.9 * sphere['r'] * pr / vabs(pr)
                doc.draw_object('path', {'stroke':'black', 'd':
                    [path_plus, path_minus][ci],
                    'transform':'translate({:.5f},{:.5f})'.format(
                        round(u*cpos[0])/u, round(u*cpos[1])/u)},
                        group=ball_charges[si])
    
    arrow_d = 2.0
    of = [0.5 + s1['r'] / arrow_d, 0.5, 0.5, 0.5 + s2['r'] / arrow_d]
    doc.draw_line(line, arrows_style={'dist':arrow_d, 'offsets':of})
doc.write()

Ліцэнзіяванне

Я, уладальнік аўтарскіх правоў на гэты твор, добраахвотна публікую яго на ўмовах наступнай ліцэнзіі:
w:en:Creative Commons
атрыбуцыя распаўсюджванне на тых жа ўмовах
Вы можаце свабодна:
  • дзяліцца творам – капіраваць, распаўсюджваць і перадаваць гэты твор.
  • ствараць вытворныя творы – адаптаваць гэты твор
Пры выкананні наступных умоў:
  • атрыбуцыя – вы павінны пазначыць аўтарства гэтага твора, даць спасылку на ліцэнзію і пазначыць ці рабіў аўтар якія-небудзь змены. Гэта можна рабіць кожным зразумелым чынам, але не так, каб наводзіць па думку, што ліцэнзіят падтрымлівае вас або выкарыстанне вамі гэтага твора.
  • распаўсюджванне на тых жа ўмовах – Калі вы змяняеце, адаптуеце ці ствараеце вытворны твор на аснове гэтага, то павінны распаўсюджваць атрыманы ў выніку твор на ўмовах такой самай ці сумяшчальнай ліцэнзіі, што і арыгінал.

Назвы

Апішыце ў адным радку, што ўяўляе сабой гэты файл

Элементы, адлюстраваныя на гэтым файле

адлюстроўвае

electrostatic induction англійская

Commons quality assessment англійская

Wikimedia Commons quality image англійская

image/svg+xml

Гісторыя файла

Націснуць на даце з часам, каб паказаць файл, якім ён тады быў.

Дата і часДрабніцаПамерыУдзельнікТлумачэнне
актуальн.23:05, 30 снежня 2018Драбніца версіі з 23:05, 30 снежня 2018800 × 600 (156 KB)Geek3User created page with UploadWizard

Наступная 1 старонка выкарыстоўвае гэты файл:

Глабальнае выкарыстанне файла

Гэты файл выкарыстоўваецца ў наступных вікі:

Метаданыя