Прастора Мінкоўскага: Розніца паміж версіямі

пераклад, афармленне
(пераклад ru:Пространство Минковского)
 
(пераклад, афармленне)
[[Выява:MinkovskyTwin fantas1Paradox Minkowski Diagram.svg|thumb|Ілюстрацыя [[Парадокс блізнят|парадокса блізнят]] на дыяграме Мінкоўскага.]]
'''Прасто́ра [[Герман Мінкоўскі|Мінко́ўскага]]''' ― чатырохмерная [[псеўдаеўклідава прастора]] [[Сігнатура, лінейная алгебра|сігнатуры]] <math>{{nowrap|(1,\; 3)</math>}}, прапанаваная ў якасці геаметрычнай мадэлі [[Прастора-час|прасторы-часу]] [[спецыяльная тэорыя адноснасці|спецыяльнай тэорыі адноснасці]].
 
Кожнай падзеі адпавядае кропка прасторы Мінкоўскага, у лорэнцавых (ці галілеевых) каардынатах, тры каардынаты якой прадстаўляюць дэкартавы каардынаты трохмернай еўклідавай прасторы, а чацвёртая ― каардынату <math>ct</math>, дзе <math>c</math> ― [[хуткасць святла]], <math>t</math> ― час падзеі.
Сувязь паміж прасторавымі адлегласцямі і прамежкамі часу паміж падзеямі, характарызуецца квадратам [[Інтэрвал, тэорыя адноснасці|інтэрвала]]:
: <math>~s^2=c^2(t_1-t_0)^2- (x_1-x_0)^2 -(y_1-y_0)^2 -(z_1-z_0)^2.</math>
 
Нярэдка ў якасці квадрата інтэрвала бяруць процілеглую велічыню, выбар знака — пытанне адвольнага пагаднення. Так, першапачаткова сам Мінкоўскі прапанаваў іменна процілеглы знак для квадрата інтэрвала).
 
Інтэрвал у прасторы Мінкоўскага выконвае ролю, падобную да ролі адлегласці ў геаметрыі [[еўклідава прастора|еўклідавых прастор]]. Ён [[інварыянт, фізіка|захоўвае сваю велічыню]] пры замене аднае [[інерцыяльная сістэма адліку|інерцыяльнае сістэмы адліку]] на другую, гэтак жа як і адлегласць не змяняецца пры паваротах, адлюстраваннях і зрухах пачатку каардынат у еўклідавай прасторы. Ролю, падобную да ролі паваротаў еўклідавай прасторы, выконваюць для прасторы Мінкоўскага [[пераўтварэнні Лорэнца]].
 
Квадрат інтэрвала аналагічны квадрату адлегласці ў еўклідавай прасторы. Аднак у прасторы Мінкоўскага квадрат інтэрвала не заўсёды дадатны, таксама паміж рознымі падзеямі інтэрвал можа быць роўны нулю.
* Інтэрвал паміж дзвюма падзеямі, праз якія праходзіць сусветная лінія інерцыяльнага назіральніка, падзелены на <math>c</math>, называецца яго '''ўласным часам''', бо гэта велічыня супадае з часам, вымераным гадзіннікам, рушачым разам з назіральнікам. Для неінерцыяльнага назіральніка ўласны час паміж дзвюма падзеямі адпавядае інтэгралу ад інтэравала ўздоўж сусветнай лініі.
* Крывая, датычны вектор к якой у кожнай яе кропцы часападобны, называецца '''часападобнаю лініяй'''. Гэтак жа вызначаюцца '''прасторападобныя''' і '''ізатропныя''' («светлападобныя») крывыя.
* Гіперпаверхня, усе датычныя вектары якой прасторападобныя, называецца '''прасторападобнаю''', калі ж у кожным пункце гіперпаверхні знойдзецца часападобны датычны вектар, такая паверхня называецца '''часападобнаю'''.
 
== Уласцівасці прасторы Мінкоўскага ==
* Калі вектар, які злучае сусветныя пункты, часападобны, то існуе сістэма адліку, у якой падзеі адбываюцца ў адной і той жа кропцы трохмернай прасторы.
* Калі вектар, які злучае сусветныя пункты дзвюх падзей, прасторападобны, то існуе сістэма адліку, у якой гэтыя дзве падзеі адбываюцца адначасова; яны не звязаны прычынна-выніковаю сувяззю; модуль інтэрвала вызначае прасторавую адлегласць паміж гэтымі пунктамі (падзеямі) у гэтай сістэме адліку.
* Мноства ўсіх сусветных ліній святла, якія выходзяць з вызначанага сусветнага пункта ў сукупнасці з усімі ўваходзячымі, утварае двухполасцевую канічную гіперпаверхню, інварыянтную (нязменную) адносна пераўтварэнняў Лорэнца,. якаяГэта гіперпаверхня называецца '''ізатропным''' ці '''светлавым конусам'''. Гэта гіперпаверхняЯна раздзяляе прычыннае мінулае дадзенага сусветнага пункта, яго прычынную будучыню і прычынна незалежную з дадзеным сусветным пунктам(прасторападобную) вобласць прасторы Мінкоўскага.
* Датычны вектар да сусветнай лініі любога звычайнага фізічнага цела з'яўляецца часападобным вектарам.
<!--
* Датычны вектар да сусветнае лініі святла (у [[вакуум]]е) з'яўляецца ізатропным вектарам.
* Касательный вектор к мировой линии любого обычного физического тела является времениподобным вектором.
* Групай рухаў прасторы Мінкоўскага, г.зн. групай пераўтварэнняў, захоўваючых метрыку, з'яўляецца 10-параметрычная [[група Пуанкарэ]], якая складаецца з 4 пераносаў — 3 прасторавых і 1 часавага, 3 чыста прасторавых вярчэнняў і 3 прасторава-часавых вярчэнняў. Апошнія 6, узятыя разам, утвараюць падгрупу групы Пуанкарэ — [[Група Лорэнца|групу пераўтварэнняў Лорэнца]]. Такім чынам, прастора Мінкоўскага з'яўляецца чатырохмернаю метрычнаю прастораю найвышэшае магчымае ступені сіметрыі і мае 10 [[вектар Кілінга|вектараў Кілінга]].
* Касательный вектор к мировой линии света (в вакууме) является изотропным вектором.
* У [[агульная тэорыя адноснасці|агульнай тэорыі адноснасці]] прастора Мінкоўскага прадстаўляе сабой трывіяльнае рашэнне [[Ураўненні Эйнштэйна|ўраўненняў Эйнштэйна]] для [[Эйнштэйнаўскі вакуум|вакууму]] (прастора з нулявым [[тэнзар энергіі-імпульсу|тэнзарам энергіі-імпульсу]] і нулявым [[лямбда-член|лямбда-членам]]).
* Гиперповерхность, все касательные векторы которой пространственноподобны, называется пространственноподобной гиперповерхностью (на такой гиперповерхности задаются начальные условия), если же в каждой точке гиперповерхности найдется времениподобный касательный вектор, такая поверхность называется времениподобной (на такой гиперповерхности нередко могут задаваться граничные условия).
 
* Группой движений пространства Минковского, то есть группой преобразований, сохраняющих метрику, является 10-параметрическая [[группа Пуанкаре]], состоящая из 4 трансляций — 3 пространственных и 1 временно́й, 3 чисто пространственных вращений и 3 пространственно-временных вращений, иначе называемых ''бустами''. Последние 6, взятые вместе, образуют подгруппу группы Пуанкаре — [[Группа Лоренца|группу преобразований Лоренца]]. Таким образом, пространство Минковского является четырёхмерным метрическим пространством наивысшей возможной степени симметрии и имеет 10 [[вектор Киллинга|векторов Киллинга]].
* Специфические физически значимые классы координат в пространстве Минковского — лоренцевы (или галилеевы) координаты, [[координаты Риндлера]] и [[координаты Борна]]. Также бывают очень удобны (особенно в двумерном случае) [[изотропные координаты]] или координаты светового конуса.
* В общей теории относительности пространство Минковского представляет собой тривиальное решение [[Уравнения Эйнштейна|уравнений Эйнштейна]] для [[Эйнштейновский вакуум|вакуума]] (пространства с нулевым [[тензор энергии-импульса|тензором энергии-импульса]] и нулевым [[лямбда-член|лямбда-членом]]).
-->
== Гісторыя ==
Гэту прастору разглядалі [[Анры Пуанкарэ]] ў 1905 і [[Герман Мінкоўскі]] ў 1908 годзе.
 
[[Анры Пуанкарэ]] першы ўстанавіў і падрабязна даследаваў адну з самых важных уласцівасцей [[Пераўтварэнні Лорэнца|пераўтварэнняў Лорэнца]] — іх [[Група, алгебра|групавую структуру]], і паказаў, што ''"пераўтварэнні Лорэнца прадстаўляюць не што іншае, як паварот у прасторы чатырох вымярэнняў, кропкі якога маюць каардынаты <math>(x,y,z,i t)</math>"''.<ref>''Пуанкаре А.'' О динамике электрона. — В кн.: Принцип относительности: Сб. работ классиков релятивизма.— М.: Атомиздат, 1973, с. 90—93, 118—160.</ref>. Такім чынам, Пуанкарэ па крайняй меры за тры гады да Мінкоўскага аб'яднаў прастору і час у адну чатырохмерную прастору-час<ref>''Фущич В.И., Никитин А.Г.'' «Симметрия уравнений Максвелла» (Наукова думка, 1983) стр. 6.</ref>.
 
== Гл. таксама ==