Залежныя і незалежныя зменныя
Залежныя і незалежныя зменныя — зменныя ў матэматычным мадэляванні , статыстычным мадэляванні і эксперыментальных навуках. Залежныя зменныя вывучаюцца пры дапушчэнні або патрабаванні, што яны залежаць паводле нейкіх законаў або правіл (напрыклад, паводле матэматычнай функцыі) ад значэнняў іншых зменных. Незалежныя зменныя, у сваю чаргу, не разглядаюцца як залежныя ад якой-небудзь іншай зменнай у рамках эксперыменту[заўв 1]. У гэтым сэнсе часта незалежнымі зменнымі з’яўляюцца час, прастора, шчыльнасць, маса[2][3] і папярэднія значэнні некаторых назіранняў (напрыклад, насельніцтва Зямлі), якія выкарыстоўваюцца для прагназавання наступных значэнняў (залежная зменная)[4].
У эксперыменце любая зменная, якой можна прыпісаць значэнне без прыпісвання значэння любой іншай зменнай, называецца незалежнай зменнай. Мадэлі і эксперыменты правяраюць уплыў незалежных зменных на залежныя зменныя. Характар такога ўплыву вывучаецца шляхам змянення ўваходных значэнняў, таксама вядомых як рэгрэсары ў статыстычным кантэксце. Часам, нават калі іх уплыў не ўяўляе непасрэднага інтарэсу, незалежныя зменныя могуць улічвацца з іншых прычын, напрыклад, каб ацаніць іх магчымы змяшальны эфект.
У матэматыцы
правіцьУ матэматыцы функцыя гэта правіла ператварэння ўваходных даных (у найпрасцейшым выпадку, лікаў або набораў лікаў) у выхадныя (якія таксама могуць быць лікамі)[5]. Сімвал, які абазначае адвольнае ўваходнае значэнне, называецца незалежнай зменнай, у той час як сімвал, які абазначае выхадное значэнне, называецца залежнай зменнай[6]. Найбольш распаўсюджаным сімвал для ўваходнага значэння — x, а для выхаднога — y; сама функцыя звычайна запісваецца як y = f(x)[6][7].
Можа існаваць некалькі незалежных зменных або некалькі залежных зменных. Напрыклад, у мнагамерным аналізе часта сустракаюцца функцыі выгляду z = f(x,y), дзе z — залежная зменная, а x і y — незалежныя зменныя[8]. Функцыі з некалькімі выхадамі часта называюць вектарнымі функцыямі .
У мадэляванні і статыстыцы
правіцьУ матэматычным мадэляванні залежная зменная разглядаецца ў кантэксце залежнасці яе значэння ад значэнняў незалежных зменных. У простай стахастычнай лінейнай мадэлі yi = a + bxi + ei, yi — i-ае значэнне залежнай зменнай, а xi — i-ае значэнне незалежнай зменнай. Складаемае ei называецца «памылкай» і змяшчае ў сабе зменлівасць залежнай зменнай, якая не можа быць растлумачана незалежнай зменнай.
У выпадку некалькіх незалежных зменных, мадэль мае выгляд yi = a + bxi,1 + bxi,2 + ... + bxi,n + ei, дзе n — колькасць незалежных зменных.
Пры правядзенні эксперыментаў зменная, якой маніпулюе эксперыментатар, называецца незалежнай зменнай[9]. Залежная зменная — гэта значэнне, якое, як чакаецца, зменіцца ў выніку маніпулявання незалежнай зменнай[10].
У машынным навучанні залежная зменная называецца мэтавай (або ў некаторых выпадках атрыбутам меткі)[11]. Значэнні мэтавай зменнай вядомыя загадзя для навучальнага і тэставага набораў даных , а задача мадэлі — навучыцца прагназаваць значэнні мэтавай зменнай для іншых даных. Мэтавая зменная выкарыстоўваецца ў алгарытмах кіраванага навучання , але не выкарыстоўваецца ў некіраваным навучанні .
Сінонімы
правіцьУ залежнасці ад кантэксту незалежную зменную часам называюць «прэдыктарнай зменнай», «рэгрэсарам», «каварыятай», «маніпуляванай зменнай», «тлумачальнай зменнай», «фактарам рызыкі » (гл. медыцынская статыстыка ), «прыкметай » (у машынным навучанні і распазнаванні вобразаў ) або «уваходнай зменнай»[12][13]. У эканаметрыцы тэрмін «кантрольная зменная» звычайна выкарыстоўваецца замест «каварыята»[14][15][16][17][18]. У эканамічнай супольнасці незалежныя зменныя называюцца яшчэ «экзагеннымі » [крыніца?].
Некаторыя аўтары аддаюць перавагу «тлумачальнай зменнай» над «незалежнай зменнай», бо велічыні, якія разглядаюцца як незалежныя зменныя, могуць не быць статыстычна незалежнымі або незалежна маніпуляванымі даследчыкам[19][20]. У выпадку, калі незалежныя зменныя называюць «тлумачальнымі», некаторыя аўтары аддаюць перавагу тэрміну «зменная адказу» для залежнай зменнай[13][19][20].
У залежнасці ад кантэксту залежную зменную часам называюць «зменнай адказу», «рэгрэсандай», «крытэрыем», «прагназуемай зменнай», «вымеранай зменнай», «растлумачанай зменнай», «эксперыментальнай зменнай», «выніковай зменнай», «выхадной зменнай», «эндагеннай зменнай», «мэтавай зменнай» або «меткай»[13].
Некаторыя аўтары аддаюць перавагу «растлумачанай зменнай» над «залежнай зменнай», бо велічыні, якія разглядаюцца як залежныя зменныя, могуць не быць статыстычна залежнымі[21]. У выпадку, калі залежная зменная называецца «растлумачанай зменнай», некаторыя аўтары аддаюць перавагу тэрміну «прэдыктарная зменная» для незалежных зменных[21].
незалежная | залежная |
уваход | выхад |
рэгрэсар | рэгрэсанда |
прэдыктар | прадказаная |
тлумачальная | растлумачаная |
экзагенная | эндагенная |
маніпуляваная | вымераная |
Іншыя зменныя
правіцьЗменная можа ўплываць на значэнні залежных ці незалежных зменных, але не знаходзіцца ў цэнтры ўвагі эксперыменту. Тады значэнне гэтай зменнай імкнуцца трымаць пастаянным або кантраляваць іншым чынам, каб зменшыць яе ўплыў на эксперымент. Такія зменныя могуць называцца «падкантрольнымі зменнымі», «кантрольнымі зменнымі » або «фіксаванымі зменнымі».
Староннія зменныя, калі яны ўключаны ў рэгрэсійны аналіз як незалежныя, могуць дапамагчы даследчыку з дакладнай ацэнкай параметраў, прагназаваннем і дапасаванасцю мадэлі , але не ўяўляюць істотнай цікавасці для даследаванай гіпотэзы. Напрыклад, у даследаванні, якое вывучае ўплыў вышэйшай адукацыі на заробак цягам усяго жыцця, староннімі зменнымі могуць быць гендар, этнічная прыналежнасць, сацыяльны клас, генетыка, інтэлект, узрост і гэтак далей. Зменная з’яўляецца старонняй толькі тады, калі можна меркаваць (або паказаць), што яна ўплывае на залежную зменную. Калі выключыць з рэгрэсіі староннюю зменную, якая мае ненулявую каварыяцыю з незалежнымі зменнымі, вынік рэгрэсіі будзе зрушаны адносна эфекту гэтых незалежных зменных. Такі эфект называецца змяшальным зрухам або зрухам прапушчаных зменных ; у такіх сітуацыях неабходныя змены ў мадэлі і/або статыстычны кантроль за староннімі зменнымі.
Староннія зменныя часта падзяляюцца на тры тыпы:
- Зменныя суб’ектаў, якія характарызуюць падыспытных асоб, і могуць паўплываць на іх дзеянні. Гэтыя зменныя ўключаюць узрост, гендар, стан здароўя, настрой, паходжанне і г.д.
- Зменныя блакіравання або эксперыментальныя зменныя — характарыстыкі асоб, якія праводзяць эксперымент, якія могуць паўплываць на паводзіны чалавека. Гендар, наяўнасць расавай дыскрымінацыі, мова ці іншыя фактары могуць кваліфікавацца як такія зменныя.
- Сітуацыйныя зменныя — асаблівасці асяроддзя, у якім праводзілася даследаванне, якія негатыўна ўплываюць на вынік эксперыменту. Напрыклад тэмпература паветра, узровень актыўнасці, асвятленне і час сутак.
У мадэляванні зменлівасць, якая не ахоплена незалежнай зменнай, пазначаецца і вядомая як «рэшта », «пабочны эфект», «памылка », «нерастлумачаная частка», «рэшткавая зменная», «парушэнне» або «талерантнасць».
Прыклады
правіць- Уплыў колькасці ўгнаення на рост раслін:
- У даследаванні, якое вымярае ўплыў рознай колькасці ўгнаення на рост раслін, незалежнай зменнай будзе колькасць выкарыстанага ўгнаення. Залежнай зменнай будзе рост у вышыню або маса расліны. Кантрольнымі зменнымі будуць тып расліны, тып угнаенняў, колькасць сонечнага святла, якое атрымлівае расліна, памер гаршкоў і г.д.
- Уплыў дазіроўкі лякарства на цяжкасць сімптомаў:
- Даследуючы, як розныя дозы лекаў уплываюць на цяжкасць сімптомаў, даследчык можа параўнаць частату і інтэнсіўнасць сімптомаў пры ўжыванні розных доз. Тут незалежнай зменнай будзе доза, а залежнай — частата/інтэнсіўнасць сімптомаў.
- Уплыў тэмпературы на пігментацыю:
- Пры вымярэнні колькасці выдаленага пігменту з узораў буракоў пры розных тэмпературах, тэмпература будзе незалежнай зменнай, а колькасць выдаленага пігменту — залежнай.
- Эфект цукру, дададзенага ў каву:
- Смак змяняецца ў залежнасці ад колькасці цукру, дададзенага ў каву. Тут цукар — незалежная зменная, а смак — залежная.
Заўвагі
правіць- ↑ Нават калі для існай залежнасці існуе адваротная функцыя, наменклатура захоўваецца, калі адваротная залежнасць не з'яўляецца аб'ектам даследавання ў эксперыменце.
Зноскі
- ↑ Hastings, Nancy Baxter. Workshop calculus: guided exploration with review. Vol. 2. Springer Science & Business Media, 1998. p. 31
- ↑ Aris, Rutherford (1994). Mathematical modelling techniques. Courier Corporation.
- ↑ Boyce, William E.; Richard C. DiPrima (2012). Elementary differential equations. John Wiley & Sons.
- ↑ Alligood, Kathleen T.; Sauer, Tim D.; Yorke, James A. (1996). Chaos an introduction to dynamical systems. Springer New York.
- ↑ Carlson, Robert. A concrete introduction to real analysis. CRC Press, 2006. p.183
- ↑ а б Stewart, James. Calculus. Cengage Learning, 2011. Section 1.1
- ↑ Anton, Howard, Irl C. Bivens, and Stephen Davis. Calculus Single Variable. John Wiley & Sons, 2012. Section 0.1
- ↑ Larson, Ron, and Bruce Edwards. Calculus. Cengage Learning, 2009. Section 13.1
- ↑ Variables .
- ↑ Random House Webster’s Unabridged Dictionary. Random House, Inc. 2001. Page 534, 971. ISBN 0-375-42566-7.
- ↑ English Manual version 1.0 Архівавана 10 лютага 2014 года. for RapidMiner 5.0, October 2013.
- ↑ Dodge, Y. (2003) The Oxford Dictionary of Statistical Terms, OUP. ISBN 0-19-920613-9 (entry for «independent variable»)
- ↑ а б в Dodge, Y. (2003) The Oxford Dictionary of Statistical Terms, OUP. ISBN 0-19-920613-9 (entry for «regression»)
- ↑ Gujarati, Damodar N.; Porter, Dawn C. (2009). "Terminology and Notation". Basic Econometrics (Fifth international ed.). New York: McGraw-Hill. pp. 21. ISBN 978-007-127625-2.
- ↑ Wooldridge, Jeffrey (2012). Introductory Econometrics: A Modern Approach (Fifth ed.). Mason, OH: South-Western Cengage Learning. pp. 22–23. ISBN 978-1-111-53104-1.
- ↑ Last, John M., рэд. (2001). A Dictionary of Epidemiology (Fourth ed.). Oxford UP. ISBN 0-19-514168-7.
- ↑ Everitt, B. S. (2002). The Cambridge Dictionary of Statistics (2nd ed.). Cambridge UP. ISBN 0-521-81099-X.
- ↑ Woodworth, P. L. (1987). "Trends in U.K. mean sea level". Marine Geodesy. 11 (1): 57–87. doi:10.1080/15210608709379549.
- ↑ а б Everitt, B.S. (2002) Cambridge Dictionary of Statistics, CUP. ISBN 0-521-81099-X
- ↑ а б Dodge, Y. (2003) The Oxford Dictionary of Statistical Terms, OUP. ISBN 0-19-920613-9
- ↑ а б Ash Narayan Sah (2009) Data Analysis Using Microsoft Excel, New Delhi. ISBN 978-81-7446-716-4