Медыяна (статыстыка)

Медыя́на, 50-ы перцэнтыль, квантыль 0,5 — значэнне, якое дзеліць упарадкаваную выбарку[d] або размеркаванне імавернасцей на дзве роўныя часткі: «верхнюю» і «ніжнюю». Значэнні элементаў выбаркі (або выпадковай велічыні) з «ніжняй» палавіны будуць не большыя за медыяну, а з «верхняй» — не меншыя за медыяну.

Многавымернае абагульненне медыяны — геаметрычная медыяна[en].

Азначэнне

правіць

Для выпадковай велічыні

правіць
 
Візуалізацыя моды, медыяны і матспадзявання на графіку шчыльнасці імавернасці некаторага размеркавання[1].

Медыянай выпадковай велічыні называецца такі лік  , для якога выконваецца няроўнасць

 

дзе   — функцыя размеркавання выпадковай велічыні ў пункце  ,   — яе аднабаковы ліміт[en] справа[заўв 1][2].

Калі функцыя размеркавання непарыўная, то няроўнасць у азначэнні спрашчаецца да роўнасці   Калі такая ўмова справядліва для некалькіх пунктаў   то ўсе яны ёсць медыянамі[3].

Для выбаркі

правіць

У статыстыцы, каб вылічыць медыяну, неабходна ўпарадкаваць элементы выбаркі ад найменшага да найбольшага і выбраць значэнне пасярэдзіне (напрыклад, медыяна выбаркі {3, 3, 5, 9, 11} роўная 5). Калі колькасць элементаў у выбарцы цотная, і нельга вылучыць нейкае адно значэнне «пасярэдзіне», то медыяна, звычайна, вызначаецца як сярэдняе з двух значэнняў «пасярэдзіне»[4] (напрыклад, медыянай выбаркі {3, 5, 7, 9} будзе (5 + 7) / 2 = 6).

Уласцівасці

правіць
  • Для выпадковай велічыні   з непарыўнай функцыяй размеркавання, медыяна мінімізуе абсалютны момант першага парадку  [5].

Заўвагі

правіць
  1. Такое азначэнне мае месца, калі сама функцыя размеркавання вызначана як непарыўная злева.

Крыніцы

правіць

Літаратура

правіць
  • Звяровіч Э. І., Радына А. Я. Элементы тэорыі імавернасцей. — Мінск: Беларусь, 2013. — ISBN 978-985-01-1043-5.

Спасылкі

правіць