Пастаянная тонкай структуры
Пастая́нная то́нкай структу́ры (звычайна абазначаецца як ) — фундаментальная фізічная пастаянная, якая характарызуе сілу электрамагнітнага ўзаемадзеяння. Яна была ўведзена ў 1916 годзе нямецкім фізікам Арнольдам Зомерфельдам ў якасці меры рэлятывісцкіх паправак пры апісанні атамных спектральных ліній у рамках мадэлі атама Бора, гэта значыць характарызуе так званую тонкую структуру спектральных ліній. Таму часам яна таксама называецца пастаяннай Зомерфельда.
Пастаянная тонкай структуры (ПТС) — гэта безразмерная велічыня, утвораная камбінацыяй фундаментальных канстант. Яе колькаснае значэнне не залежыць ад абранай сістэмы адзінак, з 2010 года рэкамендуецца выкарыстоўваць наступнае значэнне[1]:
- α = 7,2973525698(24)×10−3 = 1⁄137.035 999 074(44)
У сістэме адзінак СІ яна вызначаецца наступным чынам:
дзе — элементарны электрычны зарад,
У сістэме адзінак СГСЭ адзінка электрычнага зарада вызначана такім чынам, што электрычная пастаянная роўная адзінцы. Тады пастаянная тонкай структуры вызначаецца як:
Пастаянная тонкай структуры можа быць таксама вызначана як квадрат адносіны элементарнага электрычнага зарада да планкаўскага зарада.
Фізічная інтэрпрэтацыя
правіцьПастаянная тонкай структуры з'яўляецца адносінай дзвюх энергій:
- энергіі, неабходнай, каб пераадолець электрастатычнае адштурхванне паміж двума электронамі, зблізіць іх з бесканечнасці да некаторай адлегласці ,
- і энергіі фатона з даўжынёй хвалі .
Гістарычна першай інтэрпрэтацыяй пастаяннай тонкай структуры, якая з'явілася ў працах[2][3] Зомерфельда, была адносіна двух вуглавых момантаў, якія ўзнікаюць у тэорыі руху электрона па кеплераўскіх арбітах, — так званага гранічнага моманту , які адказвае за рух перыцэнтра пры рэлятывісцкім разглядзе, і моманту , адпаведнага першаму квантаваму стану. Пазней, у сваёй вядомай кнізе «Будова атама і спектры» [4], Зомерфельд уводзіў , як адносіну скорасці электрона на першай кругавой арбіце ў бораўскай мадэлі атама да скорасці святла. Гэтая велічыня выкарыстоўвалася далей для разліку тонкага расшчаплення спектральных ліній вадародападобных атамаў [5].
У квантавай электрадынаміцы пастаянная тонкай структуры мае значэнне канстанты ўзаемадзеяння, якая характарызуе сілу ўзаемадзеяння паміж электрычнымі зарадамі і фатонамі. Яе значэнне не можа быць прадказана тэарэтычна і ўводзіцца на аснове эксперыментальных дадзеных. Пастаянная тонкай структуры з'яўляецца адным з дваццаці «знешніх параметраў» стандартнай мадэлі ў фізіцы элементарных часціц.
Той факт, што намнога меншая за адзінку, дазваляе выкарыстоўваць у квантавай электрадынаміцы тэорыю ўзбурэнняў. Фізічныя вынікі ў гэтай тэорыі прадстаўляюцца ў выглядзе рада па ступенях , прычым члены з нарастаючай ступенню становяцца менш і менш важнымі. І наадварот, вялікая канстанта ўзаемадзеяння ў квантавай хромадынаміцы робіць вылічэнні з улікам моцнага ўзаемадзеяння надзвычай складанымі.
У тэорыі электраслабага ўзаемадзеяння паказана, што значэнне пастаяннай тонкай структуры (сіла электрамагнітнага ўзаемадзеяння) залежыць ад характэрнай энергіі разгляданага працэсу. Сцвярджаецца, што пастаянная тонкай структуры лагарыфмічна расце з павелічэннем энергіі. Назіранае значэнне пастаяннай тонкай структуры дакладнае пры энергіях парадку масы электрона. Характэрная энергія не можа прымаць больш нізкія значэнні, бо электрон (як і пазітрон) валодае самай маленькай масай сярод зараджаных часціц. Таму кажуць, што — гэта значэнне пастаяннай тонкай структуры пры нулявой энергіі. Акрамя таго, той факт, што па меры павышэння характэрных энергій электрамагнітнае ўзаемадзеянне набліжаецца па сіле да двух іншых узаемадзеянняў, важны для тэорый вялікага аб'яднання.
Калі б прадказанні квантавай электрадынамікі былі верныя, то пастаянная тонкай структуры прымала б бесканечна вялікае значэнне пры значэнні энергіі, вядомым як полюс Ландау. Гэта абмяжоўвае вобласць прымянення квантавай электрадынамікі толькі вобласцю дастасавальнасці тэорыі ўзбурэнняў.
Сталасць велічыні
правіцьДаследаванне пытання аб тым, ці сапраўды пастаянная тонкай структуры з'яўляецца пастаяннай, г.зн. мела яна заўсёды сучаснае значэнне ці змянялася за час існавання Сусвету, мае доўгую гісторыю[6]. Першыя ідэі такога роду з'явіліся ў 1930-я гады, неўзабаве пасля адкрыцця пашырэння Сусвету, і мелі на мэце захаваць статычную мадэль Сусвету за кошт змянення фундаментальных канстант з часам. Так, у артыкуле[6] Дж. і Б. Чалмерсаў прапаноўвалася тлумачэнне назіранага чырвонага зрушэння спектральных ліній галактык за кошт адначасовага ўзрастання элементарнага зарада і пастаяннай Планка (гэта павінна прыводзіць і да часавай залежнасці ). У шэрагу іншых публікацый[7][8][9] меркавалася, што пастаянная тонкай структуры застаецца нязменнай пры адначасовай варыяцыі складнікаў яе канстант.
У 1938 годзе Поль Дзірак ў рамках сваёй гіпотэзы вялікіх лікаў выказаў здагадку[10], што гравітацыйная пастаянная можа змяншацца адваротна прапарцыянальна часу. У сваім разглядзе ён лічыў сапраўднай канстантай, аднак адзначыў, што ў будучыні гэта можа аказацца не так. Гэтая праца выклікала значную цікавасць да гэтай праблемы, якая захоўваецца да гэтага часу. Прытрымліваючыся Дзірака, пытанне аб пастаяннай тонкай структуры разгледзеў[11] Паскуаль Ёрдан і прыйшоў да высновы, што залежнасць ад часу павінна выклікаць складаныя зрухі спектральных ліній. Паколькі такія зрухі не назіраюцца, ён адхіліў гэтую гіпотэзу. У 1948 годзе, спрабуючы абвергнуць гіпотэзу Дзірака, Эдвард Тэлер зазначыў[12] магчымасць лагарыфмічнай залежнасці , дзе — узрост Сусвету; аналагічныя суадносіны прапаноўваліся і пазней[13][14].
Сур'ёзнай праверцы пытанне аб змене пастаяннай тонкай структуры з часам было падвергнута ў 1967 годзе. Ініцыятарам выступіў[15] Георгій Гамаў, які, адмаўляючыся прыняць дзіракаўскую ідэю аб змене гравітацыйнай пастаяннай, замяніў яе гіпотэзай аб варыяцыі элементарнага зарада і, як вынік, . Ён таксама паказаў, што гэтую здагадку можна праверыць назіраннямі тонкай структуры спектраў аддаленых галактык. Супраць здагадкі Гамава былі выказаны пярэчанні ядзерна-фізічнага і геалагічнага характару, з якімі выступілі Фрыман Дайсан[16] і Ашэр Перэс [17]. Прамую эксперыментальную праверку гіпотэзы Гамава распачалі[18] Джон Бакол і Маартэн Шміт, вымераўшы дублеты тонкага расшчаплення пяці радыёгалактык з чырвоным зрушэннем . З вопыта вынікала адносіна вымеранага значэння пастаяннай тонкай структуры да яе лабараторнай велічыні , што супярэчыла прадказанню у выпадку (гл. таксама агляд [19]). Гамаў хутка прызнаў[20] сваё паражэнне. Не выявілі якіх-небудзь змяненняў пастаяннай тонкай структуры і даследаванні прыроднага ядзернага рэактара ў Окла, праведзеныя ў 1970-я гады[21]. Усе гэтыя працы дазволілі ўстанавіць вельмі жорсткія абмежаванні на магчымую скорасць і характар змянення і іншых фундаментальных канстант.
Тым не менш, к пачатку 2000-х гадоў удасканаленні ў методыках астранамічных назіранняў далі падставу лічыць, што пастаянная тонкай структуры, магчыма, мяняла сваё значэнне з цягам часу: аналіз ліній паглынання ў спектрах квазараў дазволіў выказаць здагадку [22], што адносная скорасць змянення складае каля math>5 \times 10^{-16}</math> у год. Даследаваліся таксама наступствы магчымай змены пастаяннай тонкай структуры для касмалогіі[23]. Аднак больш дэталёвыя назіранні квазараў, зробленыя ў красавіку 2004 года пры дапамозе спектрографа UVES на адным з 8,2-метровых тэлескопаў тэлескопа Паранальскай абсерваторыі ў Чылі, паказалі, што магчымае змяненне не можа быць больш, чым 0,6 мільённай долі ( ) за апошнія дзесяць мільярдаў гадоў (гл. артыкулы[24][25] і прэс-рэліз[26]). Паколькі гэтае абмежаванне супярэчыць больш раннім вынікам, то пытанне аб тым, ці пастаянная , лічыцца адкрытым.
У 2010 годзе пры дапамозе тэлескопа VLT былі атрыманы новыя ўказанні[27] на тое, што пастаянная тонкай структуры можа не толькі змяншацца з часам, але і ўзрастаць, прычым характар змены залежыць ад кірунку, у якім вядзецца назіранне. Магчымасці такой прасторавай змены і іншых фундаментальных канстант ў цяперашні час вывучаюцца ў літаратуры[28][29][30][31]. Тым не менш, пакуль рана рабіць якія-небудзь канчатковыя высновы аб выяўленні такога роду эфектаў.
Антрапацэнтрычнае тлумачэнне
правіцьАдно з тлумачэнняў велічыні пастаяннай тонкай структуры ўключае ў сябе антропны прынцып і абвяшчае, што значэнне гэтай канстанты мае менавіта такое значэнне, таму што інакш было б немагчымым існаванне стабільнай матэрыі і, такім чынам, жыццё і разумныя істоты не змаглі б узнікнуць. Напрыклад, вядома, што, будзь усяго на 4 % больш, вытворчасць вугляроду ўнутры зорак была б немагчымаю. Калі б была больш, чым 0,1, то ўнутры зорак не змаглі б працякаць працэсы тэрмаядзернага сінтэзу[32].
Спробы разлічыць (уключаючы нумаралогію)
правіцьРаннія спробы
правіцьПастаянная тонкай структуры, з'яўляючыся безразмернай велічынёй, якая ніяк не суадносіцца ні з якой з вядомых матэматычных канстант, заўсёды з'яўлялася аб'ектам захаплення для фізікаў. Рычард Фейнман, адзін з заснавальнікаў квантавай электрадынамікі, называў яе «адной з найвялікшых праклятых таямніц фізікі: магічны лік, які прыходзіць да нас без якога-небудзь разумення яго чалавекам». Рабілася вялікая колькасць спроб выразіць гэтую пастаянную праз чыста матэматычныя велічыні або вылічыць на аснове якіх-небудзь фізічных меркаванняў. Так, яшчэ ў 1914 хімікі Гілберт Льюіс і Эліёт Адамс, адштурхваючыся ад выразу для канстанты Стэфана, пасля некаторых здагадак выразілі[33] пастаянную Планка праз зарад электрона і скорасць святла. Калі скласці з іх формулы пастаянную тонкай структуры, якая тады яшчэ не была вядома, атрымаецца [34]
Праца Льюіса і Адамса не прайшла незаўважанай і была падхоплена некаторымі іншымі навукоўцамі[35]. Герберт Стэнлі Ален у сваім артыкуле[36] яўна сканструяваў вышэйпаказаную безразмерную велічыню (абазначыўшы яе праз ) і паспрабаваў звязаць яе з велічынёй зарада і масы электрона; ён таксама звярнуў увагу на прыкладныя суадносіны паміж масамі электрона і пратона . У 1922 чыкагскі фізік Артур Лунн дапусціў[37], што пастаянная тонкай структуры нейкім чынам звязана з ядзерным дэфектам масы, а таксама разгледзеў яе магчымую сувязь з гравітацыяй з дапамогай суадносін ( — гравітацыйная пастаянная). Акрамя таго, ён прапанаваў некалькі чыста алгебраічных выразаў для , менавіта: , , , .
Першую спробу звязаць пастаянную тонкай структуры з параметрамі Сусвету распачаў у 1925 ліверпульскі фізік Джэймс Райс, які знаходзіўся пад вялікім уражаннем ад работ астрафізіка Артура Эдзінгтана па аб'яднанні агульнай тэорыі адноснасці з электрамагнетызмам[38]. У сваім першым артыкуле[39] Райс прыйшоў да наступнага выразу, які звязвае з радыусам крывізны Сусвету ,
дзе — электрамагнітны радыус электрона, — гравітацыйны радыус электрона. Аднак неўзабаве ён выявіў у сваіх вылічэннях грубую памылку і ў наступным артыкуле[40] прадставіў выпраўлены варыянт суадносін, а менавіта:
Узяўшы для радыуса Сусвету велічыню см, Райс артымаў .
Тэорыя Эдзінгтана
правіцьДля Эдзінгтана пытанне аб вывадзе пастаяннай тонкай структуры было адной з асобных праблем яго даследчай праграмы па пабудове фундаментальнай тэорыі, здольнай звязаць атамныя і касмічныя велічыні. У 1929—1932 гадах ён апублікаваў серыю артыкулаў[41][42][43][44], прысвечаных тэарэтычнаму вылічэнню канстанты , якая, як ён лічыў, выражае некаторы лік ступеней свабоды электрона і таму павінна быць цэлым лікам. Са сваёй тэорыі Эдзінгтан атрымаў , а пазней дадаў да гэтай велічыні яшчэ адзінку, звязаўшы гэта з прынцыпам нераспазнавальнасці часціц. Ён таксама звязваў лік з адносінай мас пратона і электрона , якая, згодна з яго здагадкай, павінна раўняцца адносіне каранёў квадратнага ўраўнення
дзе — нейкая «стандартная маса». З рашэння гэтага ўраўнення вынікае (эксперыментальнае значэнне, вядомае ў той час, — ). Эдзінгтан таксама суадносіў пастаянную тонкай структуры з касмічнымі канстантамі (у прыватнасці, з лікам Эдзінгтана, які ацэньвае лік барыёнаў у Сусвеце). Напрыклад, у рамках мадэлі статычна замкнёнага Сусвету ён атрымаў
дзе — радыус Сусвету, — лік электронаў у ім. Аргументы Эдзінгтана былі малазразумелыя большасці фізікаў і былі гэтак жа мала пераканаўчыя, хоць яго тэорыя і прыцягнула пэўную цікавасць навуковай супольнасці. Эксперыменты, праведзеныя ў наступныя гады, паказалі, што не з'яўляецца цэлым лікам. Зрэшты, сам Эдзінгтан да канца жыцця прытрымліваўся сваіх перакананняў. Рэйманд Бірдж, адзін з асноўных апанентаў Эдзінгтана, у 1941 годзе прапанаваў[45] наступныя суадносіны:
дзе — пастаянная Рыдберга для выпадку бесканечнай масы ядра, — пастаянная Фарадэя, — лік Авагадра [46].
Іншыя спробы сярэдзіны XX стагоддзя
правіцьХоць некаторыя вядучыя фізікі (Зомерфельд, Шродзінгер, Ёрдан) з цікавасцю паставіліся да тэорыі Эдзінгтана, неўзабаве стала ясная цяжкасць узгаднення з эксперыментам; акрамя таго, было цяжка зразумець методыку Эдзінгтана. Па трапнаму выразу Вольфганга Паўлі, гэта была хутчэй «рамантычная паэзія, а не фізіка»[47]. Тым не менш, гэтая тэорыя спарадзіла мноства паслядоўнікаў, якія прапаноўвалі свае больш ці менш спекуляцыйныя падыходы да аналізу паходжання пастаяннай тонкай структуры[48]. Так у 1929 Уладзімір Ражанскі фактычна «пераадкрыў» суадносіны Алена паміж масамі пратона і электрона[49], а Энас Уітмер прапанаваў[50] суадносіны паміж масамі атамаў гелія і вадароду ў выглядзе
Аналагічныя спробы звязаць з іншымі канстантамі прыроды (асабліва з ) рабілі прыкладна ў гэты час Вільгельм Андэрсан[51], Рейнгальд Фюрт[52], Вальтэр Глазер і Курт Зіттэ (яны вызначылі[53] максімальную колькасць хімічных элементаў як ), Артур Гааз[54], Альфрэд Ланде[55] і іншыя. Вялікая колькасць такога роду прац заахвоціла фізікаў Гвіда Бека, Ханса Бетэ і Вольфганга Рыцлера адправіць у часопіс Die Naturwissenschaften жартоўную нататку «Да квантавай тэорыі абсалютнага нуля тэмпературы»[56]. Гэты артыкул парадзіраваў пошукі нумаралагічных формул для фізічных канстант і прапанаваў «тлумачэнне» таму факту, што пастаянная тонкай структуры прыкладна роўная , дзе °C — абсалютны нуль тэмпературы. Рэдакцыя часопіса не ўсвядоміла парадыйнага характару нататкі і апублікавала яе на старонках выдання. Калі праўда адкрылася, гэты жарт выклікаў гнеў рэдактара часопіса Арнольда Берлінера, так што, па патрабаванні Зомерфельда, Бетэ быў вымушаны папрасіць прабачэння за свой учынак[57].
Пасля адкрыцця мюона ў 1937 г. узніклі спекуляцыйныя здагадкі аб сувязі новай часціцы з канстантамі прыроды. Згодна з Патрыкам Блэкетам[58], магчымая сувязь паміж гравітацыяй і часам жыцця мюона ў выглядзе
дзе — маса мюона. Генры Флінт, грунтуючыся на меркаваннях 5-мернага пашырэння тэорыі адноснасці, атрымаў[59] суадносіны . Сярод пазнейшых спроб можна адзначыць чыста нумаралагічныя суадносіны паміж масамі пратона і электрона, якія з'явіліся ў надзвычай кароткай нататцы[60] нейкага Фрыдріха Ленца, у якіх было сказана: . У 1952 Ёіціро Намбу паказаў[61], што масы элементарных часціц, цяжэйшых за электрон, можна апісаць наступнай эмпірычнай формулай:
дзе — цэлы лік. Напрыклад, для атрымліваецца маса мюона ( ), для — маса пі-мезона ( ), для — прыблізная маса нуклонаў ( ).
Больш навукова абгрунтаванымі былі спробы разлічыць велічыню пастаяннай тонкай структуры, прадпрынятыя Максам Борнам і Вернерам Гейзенбергам на аснове іх абагульненняў існуючых палявых тэорый[62]. Борн пры дапамозе свайго падыходу, заснаванага на «прынцыпе ўзаемнасці» (гл., напрыклад, працы[63][64][65]), к канцу 1940-х гадоў змог атрымаць толькі ацэнку, якая дала . Гейзенбергу ў рамках яго нелінейнай тэорыі поля таксама ўдалося атрымаць[66][67] згоду з эксперыментальным значэннем пастаяннай толькі па парадку велічыні.
Сучасныя спробы
правіцьМагчыма і асацыяцыя з меркаванай размернасцю прасторы-часу[68]: у адной з самых многаабяцальных тэорый апошняга часу — так званай «М-тэорыі», якая развіваецца як абагульненне тэорыі суперструн і прэтэндуе на апісанне ўсіх фізічных узаемадзеянняў і элементарных часціц — прастора-час мяркуецца 11-мернаю. Пры гэтым адно вымярэнне на макраўзроўні ўспрымаецца як час, яшчэ тры — як макраскапічныя прасторавыя вымярэнні, астатнія сем — гэта так званыя «згорнутыя» (квантавыя) вымярэнні, якія адчуваюцца толькі на мікра-ўзроўні. ПТС пры гэтым аб'ядноўвае лікі 1, 3 і 7 з множнікамі, кратнымі дзесяці, прычым 10 можна інтэрпрэтаваць як сумарную размернасць прасторы ў тэорыі суперструн.
Падобным чынам матэматык Джэймс Гілсан прапанаваў, што пастаянная тонкай структуры можа быць матэматычна, з вялікай ступенню дакладнасці, вызначана як
29 і 137 з'яўляюцца, адпаведна, 10-м і 33-м простымі лікамі. Да дадзеных 2002 года гэтае значэнне ляжала ў граніцах памылак вымярэнняў . На цяперашні час яно адрозніваецца на 1,7 стандартнага адхілення эксперыментальных дадзеных, што робіць дадзенае значэнне магчымым, але малаверагодным.
У нядаўнім артыкуле А. Альчака[68] прыводзіцца больш кампактная і выразная формула, якая прыбліжае пастаянную тонкай структуры з не горшай дакладнасцю, чым у формуле Гілсана. Велічыня ПТС пры гэтым звязваецца з ключавой для дынамікі хаосу пастаяннай Фейгенбаума . Гэтая пастаянная, у самых агульных словах, характарызуе скорасць прыбліжэння рашэнняў нелінейных дынамічных сістэм да стану «няўстойлівасці ў кожнай кропцы» або «дынамічнага хаосу». На сённяшні дзень разліковае значэнне пастаяннай Фейгенбаума (у межах дакладнасці, што патрабуецца для разліку ПТС) складае .
Велічыня ПТС вельмі дакладна вылічаецца як корань простага ўраўнення
дзе ,
і складае што прыбліжае эксперыментальнае значэнне да дзясятага дзесятковага знака. Дакладнасць супадзення складае ~ 1,3 стандартнага інтэрвала сённяшняй эксперыментальнай хібнасці.
Варта таксама заўважыць, што з пункта гледжання сучаснай квантавай электрадынамікі пастаянная тонкай структуры з'яўляецца бягучай канстантай сувязі, гэта значыць залежыць ад энергетычнага маштабу ўзаемадзеяння. Гэты факт пазбаўляе большай часткі фізічнага сэнсу спробы сканструяваць нумаралагічную формулу для нейкага канкрэтнага (у прыватнасці — нулявога, калі гаворка ідзе пра значэнне ) перададзенага імпульса.
Гл. таксама
правіцьКрыніцы
правіць- ↑ Рэкамендаванае CODATA значэнне пастаяннай тонкай структуры
- ↑ A. Sommerfeld. Die Feinstruktur der Wasserstoff- und der Wasserstoff-ähnlichen Linien // Sitzungsberichte der Königl. Bayerischen Akademie der Wissenschaften zu München. — 1915. — P. 459—500.
- ↑ A. Sommerfeld. Zur Quantentheorie der Spektrallinien // Annalen der Physik. — 1916. — Vol. 356 (51). — P. 1—94.
- ↑ A. Зоммерфельд. Строение атома и спектры. — М.: Гостехиздат, 1956. — Т. 1. — С. 81.
- ↑ Kragh 2003, pp. 403–404.
- ↑ а б J. A. Chalmers, B. Chalmers. The expanding universe—an alternative view // Philosophical Magazine Series 7. — 1935. — Vol. 19. — P. 436—446.
- ↑ S. Sambursky. Static Universe and Nebular Red Shift // Physical Review. — 1937. — Vol. 52. — P. 335—338.
- ↑ K. P. Stanyukovich. Possible changes in the gravitational constant // Soviet Physics — Doklady. — 1963. — Vol. 7. — P. 1150—1152.
- ↑ J. O'Hanlon, K.-K. Tam. Time Variation of the Fundamental Constants of Physics // Progress of Theoretical Physics. — 1969. — Vol. 41. — P. 1596—1598.
- ↑ P. A. M. Dirac. A New Basis for Cosmology // Proc. R. Soc. Lond. A. — 1938. — Vol. 165. — P. 199—208.
- ↑ P. Jordan. Über die kosmologische Konstanz der Feinstrukturkonstanten // Zeitschrift für Physik. — 1939. — Vol. 113. — P. 660—662.
- ↑ E. Teller. On the Change of Physical Constants // Physical Review. — 1948. — Vol. 73. — P. 801—802.
- ↑ J. Brandmüller, E. Rüchardt. Die Sommerfeldsche Feinstrukturkonstante und das Problem der spektroskopischen Einheiten // Die Naturwissenschaften. — 1950. — Vol. 37. — P. 337—343.
- ↑ R. Baggiolini. On a Remarkable Relation between Atomic and Universal Constants // American Journal of Physics. — 1957. — Vol. 25. — P. 324—325.
- ↑ G. Gamow. Electricity, Gravity, and Cosmology // Physical Review Letters. — 1967. — Vol. 19. — P. 759—761.
- ↑ F. J. Dyson. Time Variation of the Charge of the Proton // Physical Review Letters. — 1967. — Vol. 19. — P. 1291—1293.
- ↑ A. Peres. Constancy of the Fundamental Electric Charge // Physical Review Letters. — 1967. — Vol. 19. — P. 1293—1294.
- ↑ J. N. Bahcall, M. Schmidt. Does the Fine-Structure Constant Vary with Cosmic Time? // Physical Review Letters. — 1967. — Vol. 19. — P. 1294—1295.
- ↑ Я. М. Крамаровский, В. П. Чечев. Изменяется ли заряд электрона с возрастом Вселенной? // УФН. — 1970. — Т. 102. — С. 141—148.
- ↑ G. Gamow. Numerology of the Constants of Nature // PNAS. — 1968. — Vol. 59. — P. 313—318.
- ↑ Ю. В. Петров. Естественный ядерный реактор Окло // УФН. — 1977. — Т. 123. — С. 473—486.
- ↑ M. T. Murphy, J. K. Webb, V. V. Flambaum, V. A. Dzuba, C. W. Churchill, J. X. Prochaska, J. D. Barrow, A. M. Wolfe. Possible evidence for a variable fine-structure constant from QSO absorption lines: motivations, analysis and results // Monthly Notices of the Royal Astronomical Society. — 2001. — Vol. 327. — P. 1208—1222.
- ↑ J. D. Barrow, H. B. Sandvik, J. Magueijo. Behavior of varying-alpha cosmologies // Physical Review D. — 2002. — Vol. 65. — P. 063504.
- ↑ R. Srianand, H. Chand, P. Petitjean, B. Aracil. Limits on the Time Variation of the Electromagnetic Fine-Structure Constant in the Low Energy Limit from Absorption Lines in the Spectra of Distant Quasars // Physical Review Letters. — 2004. — Vol. 92. — P. 121302.
- ↑ H. Chand, R. Srianand, P. Petitjean, B. Aracil. Probing the cosmological variation of the fine-structure constant: Results based on VLT-UVES sample // Astronomy & Astrophysics. — 2004. — Vol. 417. — P. 853—871.
- ↑ New Quasar Studies Keep Fundamental Physical Constant Constant Архівавана 14 студзеня 2006. // ESO Press Release, 31 March 2004
- ↑ J. K. Webb, J. A. King, M. T. Murphy, V. V. Flambaum, R. F. Carswell, M. B. Bainbridge. Indications of a Spatial Variation of the Fine Structure Constant // Physical Review Letters. — 2011. — Vol. 107. — P. 191101. Гл. таксама артыкул у архіве.
- ↑ J. C. Berengut, V. V. Flambaum, J. A. King, S. J. Curran, J. K. Webb. Is there further evidence for spatial variation of fundamental constants? // Physical Review D. — 2011. — Vol. 83. — P. 123506. Гл. таксама артыкул у архіве.
- ↑ J. A. King, M. T. Murphy, W. Ubachs, J. K. Webb. New constraint on cosmological variation of the proton-to-electron mass ratio from Q0528-250 // Monthly Notices of the Royal Astronomical Society. — 2011.
- ↑ S. J. Curran, A. Tanna, F. E. Koch, J. C. Berengut, J. K. Webb, A. A. Stark, V. V. Flambaum. Measuring space-time variation of the fundamental constants with redshifted submillimetre transitions of neutral carbon // Astronomy & Astrophysics. — 2011.
- ↑ J. C. Berengut, V. V. Flambaum. Manifestations of a spatial variation of fundamental constants in atomic and nuclear clocks, Oklo, meteorites, and cosmological phenomena // Europhysics Letters. — 2012. — Vol. 97. — P. 20006.
- ↑ J. D. Barrow. Cosmology, Life, and the Anthropic Principle // Annals of the New York Academy of Sciences. — 2001. — Vol. 950. — P. 139-153.
- ↑ G. N. Lewis and E. Q. Adams. A Theory of Ultimate Rational Units; Numerical Relations between Elementary Charge, Wirkungsquantum, Constant of Stefan's Law // Physical Review. — 1914. — Vol. 3. — P. 92—102.
- ↑ Kragh 2003, pp. 400–401.
- ↑ Kragh 2003, pp. 401–402.
- ↑ H. Stanley Allen. Numerical Relationships between Electronic and Atomic Constants // Proceedings of the Physical Society of London. — 1914. — Vol. 27. — P. 425—431.
- ↑ A. C. Lunn. Atomic Constants and Dimensional Invariants // Physical Review. — 1922. — Vol. 20. — P. 1—14.
- ↑ Kragh 2003, p. 406.
- ↑ J. Rice. On Eddington's natural unit of the field, and possible relations between it and the universal constants of physics // Philosophical Magazine Series 6. — 1925. — Vol. 49. — P. 457—463.
- ↑ J. Rice. On Eddington's natural unit of the field // Philosophical Magazine Series 6. — 1925. — Vol. 49. — P. 1056—1057.
- ↑ A. S. Eddington. The Charge of an Electron // Proc. R. Soc. Lond. A. — 1929. — Vol. 122. — P. 358—369.
- ↑ A. S. Eddington. The Interaction of Electric Charges // Proc. R. Soc. Lond. A. — 1930. — Vol. 126. — P. 696—728.
- ↑ A. S. Eddington. On the Value of the Cosmical Constant // Proc. R. Soc. Lond. A. — 1931. — Vol. 133. — P. 605—615.
- ↑ A. S. Eddington. Theory of Electric Charge // Proc. R. Soc. Lond. A. — 1932. — Vol. 138. — P. 17—41.
- ↑ R. T. Birge. The general physical constants: As of august 1941 with details on the velocity of light only // Reports on Progress in Physics. — 1941. — Vol. 8. — P. 90—134.
- ↑ Kragh 2003, pp. 411–415.
- ↑ Kragh 2003, pp. 416–418.
- ↑ Kragh 2003, pp. 419–422.
- ↑ V. Rojansky. The Ratio of the Mass of the Proton to that of the Electron // Nature. — 1929. — Vol. 123. — P. 911—912.
- ↑ E. E. Witmer. The Relative Masses of the Proton, Electron, and Helium Nucleus // Nature. — 1929. — Vol. 124. — P. 180—181.
- ↑ W. Anderson. Über die Struktur der Lichtquanten // Zeitschrift für Physik. — 1929. — Vol. 58. — P. 841—857.
- ↑ R. Fürth. Über einen Zusammenhang zwischen quantenmechanischer Unschärfe und Struktur der Elementarteilchen und eine hierauf begründete Berechnung der Massen von Proton und Elektron // Zeitschrift für Physik. — 1929. — Vol. 57. — P. 429—446.
- ↑ W. Glaser, K. Sitte. Elementäre Unschärfen, Grenze des periodischen Systems und Massenverhältnis von Elektron und Proton // Zeitschrift für Physik. — 1934. — Vol. 87. — P. 674—686.
- ↑ A. E. Haas. The Dimensionless Constants of Physics // PNAS. — 1938. — Vol. 24. — P. 274—276.
- ↑ A. Landé. The Ratio of e, c, and h // Physical Review. — 1940. — Vol. 58. — P. 843.
- ↑ G. Beck, H. Bethe and W. Riezler. Bemerkung zur Quantentheorie der Nullpunktstemperatur // Die Naturwissenschaften. — 1931. — Vol. 19. — P. 39.
- ↑ Kragh 2003, p. 421.
- ↑ P. M. S. Blackett. Instability of the mesotron and the gravitational constant // Nature. — 1939. — Vol. 144. — P. 30.
- ↑ H. T. Flint. The theory of the electric charge and the quantum theory // Philosophical Magazine Series 7. — 1940. — Vol. 29. — P. 330—343.
- ↑ F. Lenz. The Ratio of Proton and Electron Masses // Physical Review. — 1951. — Vol. 82. — P. 554.
- ↑ Y. Nambu. An empirical mass spectrum of elementary particles // Progress in Theoretical Physics. — 1952. — Vol. 7. — P. 595—596.
- ↑ Kragh 2003, pp. 424–426.
- ↑ M. Born. Relativity and Quantum Theory // Nature. — 1938. — Vol. 141. — P. 327—328.
- ↑ M. Born. Reciprocity and the number 137 // Proceedings of the Royal Society (Edinburgh). — 1939. — Vol. 59. — P. 219—233.
- ↑ M. Born. Reciprocity Theory of Elementary Particles // Reviews of Modern Physics. — 1949. — Vol. 21. — P. 463—473.
- ↑ W. Heisenberg. Quantum Theory of Fields and Elementary Particles // Reviews of Modern Physics. — 1957. — Vol. 29. — P. 269—278.
- ↑ H. P. Düre, W. Heisenberg, H. Yamamoto, K. Yamazaki. Quantum electrodynamics in the nonlinear spinor theory and the value of Sommerfeld’s fine-structure constant // Il Nuovo Cimento. — 1965. — Vol. 38. — P. 1220—1242.
- ↑ а б Ольчак А. С. О возможной связи фундаментальных констант физики: постоянной тонкой структуры и постоянной Фейгенбаума. — Естетственные и технические науки. — 2009. — № 2. — стр. 19—22.
Літаратура
правіць- То́нкай структу́ры пастая́нная // Беларуская энцыклапедыя: У 18 т. Т. 15: Следавікі — Трыо / Рэдкал.: Г. П. Пашкоў і інш. — Мн. : БелЭн, 2002. — Т. 15. — С. 488. — 10 000 экз. — ISBN 985-11-0035-8. — ISBN 985-11-0251-2 (т. 15).
- То́нкой структу́ры постоя́нная // Т. 26. Тихоходки — Ульяново. — М. : Советская энциклопедия, 1977. — С. 73. — (Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров; 1969—1978). (руск.)
- То́нкой структу́ры постоя́нная // Физика. Большой энциклопедический словарь (руск.) / Гл. ред. А. М. Прохоров. — 4-е изд. — М.: Большая Российская энциклопедия, 1998. — С. 763. — 944 с. — (Большие энциклапедические словари). — 16 000 экз. — ISBN 5-85270-306-0.
- H. Kragh. Magic Number: A Partial History of the Fine-Structure Constant // Archive for History of Exact Sciences. — 2003. — Vol. 57. — P. 395—431.
- М. Борн. Таинственное число 137 // УФН. — 1936. — Т. 16. — С. 697—729.
- Постоянная тонкой структуры // Физическая энциклопедия. — М.: БРЭ, 1998. — Т. 5. — С. 131.