У вектарным злічэнні градые́нт скалярнага поля — вектарнае поле, якое ўказвае напрамак найхутчэйшага нарастання скалярнага поля, а амплітуда гэтага поля ёсць хуткасць нарастання. У дэкартавых каардынатах градыент роўны вектару частковых вытворных функцыі па адпаведных каардынатах.

Аперацыя градыента пераўтварае пагорак (злева), калі глядзець на яго зверху, у поле вектараў (справа). Відаць, што вектары накіраваны «ў горку» і тым даўжэйшыя, чым круцейшы нахіл.

Напрыклад, калі ўзяць у якасці вышыню паверхні зямлі над узроўнем мора, то яе градыент у кожным пункце будзе паказваць «напрамак самага крутога пад’ёму», а сваёю велічынёй характарызаваць крутасць схілу.

З матэматычнага пункту гледжання градыент — гэта вытворная скалярнай функцыі, вызначанай на вектарнай прасторы.

Прастора, на якой вызначана функцыя і яе градыент, можа быць, увогуле кажучы, як звычайнай трохмернай прасторай, так і прасторай любой іншай размернасці і любой фізічнай прыроды, ці чыста абстрактнай.

Тэрмін упершыню з’явіўся ў метэаралогіі, а ў матэматыку быў уведзены Максвелам у 1873 г. Абазначэнне grad таксама прапанаваў Максвел.

Стандартныя абазначэнні:

або, з выкарыстаннем аператара набла,

— замест можа быць любое скалярнае поле, абазначанае любою літарай, напрыклад  — абазначэнне градыента поля V.

Азначэнне правіць

У выпадку трохмернай прасторы градыентам скалярнай функцыі   каардынат  ,  ,   называецца вектарная функцыя з кампанентамі

 

Абазначыўшы адзінкавыя вектары (орты) па восях прамавугольных дэкартавых каардынат як   градыент можна запісаць у выглядзе:

 

Калі   — функцыя   зменных   то яе градыентам называецца  -мерны вектар

 

кампаненты якога роўныя частковым вытворным   па яе адпаведных аргументах.

  • Размернасць вектара градыента поля вызначаецца, такім чынам, размернасцю прасторы (ці мнагастайнасці), на якой зададзена гэта скалярнае поле.
  • Аператарам градыента (які звычайна абазначаюць як   або  ) называецца аператар, дзеянне якога на скалярную функцыю (поле) дае яе градыент. Гэты аператар іншы раз называюць проста «градыентам».

Сэнс градыента любой скалярнай функцыі   у тым, што яго скалярны здабытак з бесканечна малым вектарам перамяшчэння   дае поўны дыферэнцыял гэтай функцыі пры адпаведным змяненні каардынат у прасторы, на якой вызначана  , г. зн. лінейную (у выпадку агульнага становішча яна ж галоўная) частку змянення   пры перамяшчэнні на  . Прымяняючы адну і тую ж літару для абазначэння функцыі ад вектара і адпаведнай функцыі ад яго каардынат, можна напісаць:

 

Варта тут заўважыць, што раз формула поўнага дыферэнцыяла не залежыць ад віду каардынат  , г.зн. ад прыроды параметраў x увогуле, то атрыманы дыферэнцыял з’яўляецца скалярным інварыянтам пры любых пераўтварэннях каардынат, а раз   — гэта вектар, то градыент, вылічаны звычайным спосабам, аказваецца каварыянтным вектарам, г.зн. вектарам, прадстаўленым у дуальным базісе, які толькі і можа даць скаляр пры простым складанні здабыткаў каардынат звычайнага (контраварыянтнага), г.зн. вектарам, запісаным у звычайным базісе. Такім чынам, выраз (увогуле кажучы — для адвольных крывалінейных каардынат) можа быць цалкам правільна і інварыянтна запісаны як:

 

ці, апускаючы згодна з правілам Эйнштэйна знак сумы,

 

(у ортанарміраваным базісе мы можам пісаць усе індэксы ніжнімі, як мы і рабілі вышэй). Аднак градыент аказваецца сапраўдным каварыянтным вектарам у любых крывалінейных каардынатах.

Прыклад правіць

Напрыклад, градыент функцыі   будзе роўны:

 

У фізіцы правіць

У розных галінах фізікі выкарыстоўваецца паняцце градыента розных фізічных палёў.

Напрыклад, напружанасць электрастатычнага поля ёсць мінус градыент электрычнага патэнцыялу, напружанасць гравітацыйнага поля (паскарэнне свабоднага падзення) у класічнай тэорыі гравітацыі ёсць мінус градыент гравітацыйнага патэнцыялу. Кансерватыўная сіла ў класічнай механіцы ёсць мінус градыент патэнцыяльнае энергіі.

У прыродазнаўчых навуках правіць

Паняцце градыента прымяняецца не толькі ў фізіцы, але і ў сумежных і нават параўнальна далёкіх ад фізікі навуках (іншы раз гэта прымяненне мае колькасны, а часам і проста якасны характар).

Напрыклад, градыент канцэнтрацыі — нарастанне ці спаданне па якім-небудзь напрамку канцэнтрацыі растворанага рэчыва, градыент тэмпературы — павелічэнне ці памяншэнне па якім-небудзь напрамку тэмпературы асяроддзя і пад.

Градыент такіх велічынь можа быць выкліканы рознымі прычынамі, напрыклад, механічнаю перашкодаю, дзеяннем электрамагнітных, гравітацыйных ці іншых палёў або адрозненнямі ў растваральнай здольнасці пагранічных фаз.

Геаметрычны сэнс правіць

Разгледзім сямейства ліній узроўню функцыі  :

 

Няцяжка паказаць, што градыент функцыі   у кропцы   перпендыкулярны яе лініі ўзроўню, якая праходзіць праз гэту кропку. Модуль градыента паказвае найбольшую скорасць змянення функцыі ў наваколлі  , г.зн. частату ліній узроўню. Напрыклад, лініі ўзроўню вышыні рысуюцца на тапаграфічных картах, пры гэтым модуль градыента паказвае крутасць спуску ці пад’ёму ў дадзенай кропцы.

Сувязь з вытворнаю па напрамку правіць

Прымяняючы правіла дыферэнцавання складанай функцыі, няцяжка паказаць, што вытворная функцыі   па напрамку   раўняецца скалярнаму здабытку градыента   на адзінкавы вектар  :

 

Такім чынам, для вылічэння вытворнай па любым напрамку дастаткова знаць градыент функцыі, то бок вектар, кампаненты якога з’яўляюцца яе частковымі вытворнымі.

Градыент у артаганальных крывалінейных каардынатах правіць

 

дзе   — каэфіцыенты Ламе.

Палярныя каардынаты (на плоскасці) правіць

Каэфіцыенты Ламе:

 

Адсюль:

 

Цыліндрычныя каардынаты правіць

Каэфіцыенты Ламе:

 

Адсюль:

 

Сферычныя каардынаты правіць

Каэфіцыенты Ламе:

 

Адсюль:

 

Гл. таксама правіць

Літаратура правіць

  • Дубровин Б. А., Новиков С. П., Фоменко А. Т. Современная геометрия. Учебное пособие для физико-математических специальностей университетов, 1986. стр.30