Гравітацыя
Гравіта́цыя (сусве́тнае прыцягне́нне, прыцягне́нне) (ад лац.: gravitas — «цяжкасць») — універсальнае фундаментальнае ўзаемадзеянне паміж усімі матэрыяльнымі целамі. Пры малых хуткасцях і слабым гравітацыйным ўзаемадзеянні апісваецца тэорыяй прыцягнення Ньютана. У сучаснай фізіцы ў агульным выпадку гравітацыя найбольш дакладна апісваецца агульнай тэорыяй адноснасці Эйнштэйна, у якім з’ява прыцягнення з’яўляецца вынікам скрыўлення прасторы-часу пад уздзеяннем інерцыйных аб’ектаў. Аднак Ньютанаў просты закон сусветнага прыцягнення забяспечвае дакладнае прыбліжэнне для большасці фізічных сітуацый, у тым ліку і такіх крытычных разлікаў, як будаванне траекторыі руху касмічнага карабля.
Гравітацыя | |
---|---|
Вывучаецца ў | Закон сусветнага прыцягнення і АТА |
Першаадкрывальнік | Ісаак Ньютан |
Код WordLift | data.thenextweb.com/tnw/… |
Процілегла | non-gravitational force[d] |
Медыяфайлы на Вікісховішчы |
Гравітацыя з’яўляецца самым слабым з чатырох тыпаў фундаментальных узаемадзеянняў (куды акрамя гравітацыі адносяцца электрамагнетызм і ядзерныя моцнае і слабае ўзаемадзеянні). На квантавай граніцы пераходзіць у квантавую тэорыі гравітацыі, якая яшчэ цалкам не распрацована. Дзякуючы гравітацыі Зямля і іншыя планеты застаюцца на сваіх арбітах вакол Сонца, Месяц круціцца па арбіце вакол Зямлі, існуюць прылівы і многае іншае.
Гравітацыйнае ўзаемадзеянне
правіцьУ рамках класічнай механікі гравітацыйнае ўзаемадзеянне апісваецца законам сусветнага прыцягнення Ньютана, згодна з якім сіла гравітацыйнага прыцягнення паміж дзвюма матэрыяльнымі кропкамі масы m і M, падзеленымі адлегласцю R, прама прапарцыянальная абодвум масам і адваротна прапарцыянальная квадрату адлегласці між імі:
дзе G — гравітацыйная пастаянная, роўная прыкладна 6,6725×10−11 м³/(кг·с²)
Закон сусветнага прыцягнення — адна з праяў закона адваротных квадратаў, які сустракаецца таксама пры вывучэнні выпраменьванняў (гл. напрыклад, ціск святла) і з’яўляецца прамым вынікам квадратычнага павелічэння плошчы сферы пры павелічэнні радыуса, што прыводзіць да квадратычнага ж памяншэння ўкладу любой адзінкавай плошчы ў плошчу ўсяе сферы.
Гравітацыйнае поле, гэтак жа як і поле сілы цяжару, з’яўляецца патэнцыяльным. Гэта значыць, што можна ўвесці патэнцыяльную энергію гравітацыйнага прыцягнення пары цел, і гэтая энергія не зменіцца пасля перамяшчэння цел па замкнёным контуры. Патэнцыяльнасць гравітацыйнага поля цягне за сабой закон захавання сумы кінетычнай і патэнцыяльнай энергіі і пры вывучэнні руху цел у гравітацыйным полі часта істотна спрашчае рашэнне. У рамках ньютанаўскай механікі гравітацыйнае ўзаемадзеянне з’яўляецца далёкадзейным. Гэта азначае, што як бы масіўнае цела ні рухалася, у любой кропцы прасторы гравітацыйны патэнцыял залежыць толькі ад становішча цела ў дадзены момант часу.
Вялікія касмічныя аб’екты, гэта значыць планеты, зоркі і галактыкі маюць вялікую масу і, такім чынам, ствараюць значныя гравітацыйныя палі. Сілы прыцягнення адны з самых слабых відаў сіл на ўзроўні мікрасвету, і часцей за ўсё ў квантавамеханічных разліках гравітацыю не ўлічваюць. Але яна дзейнічае на любых адлегласцях, да таго ж, усе масы дадатныя, у выніку, у маштабах Сусвету гэта адна з самых відавочных сіл. Тады як, напрыклад, электрамагнітнае ўзаемадзеянне паміж целамі ў касмічных маштабах малое, бо поўны электрычны зарад гэтых цел роўны нулю, а рэчыва ў цэлым электрычна нейтральнае. Таксама гравітацыя, у адрозненне ад іншых узаемадзеянняў, універсальная ў дзеянні на ўсю матэрыю і энергію. Да нашага часу не выяўлена ні аднаго аб’екта, у якога наогул адсутнічала бы гравітацыйнае ўзаемадзеянне.
З-за глабальнага характару гравітацыя адказная і за такія буйнамаштабныя праявы, як структура галактык, чорныя дзіркі і пашырэнне Сусвету, і за элементарныя астранамічныя з’явы, як існаванне арбіты ў планет, і за простае прыцягненне да паверхні Зямлі і падзенне цел.
Гравітацыя была першым узаемадзеяннем, апісаным матэматычнай тэорыяй. Арыстоцель лічыў, што аб’екты з рознай масай падаюць з рознай хуткасцю. Толькі шмат пазней Галілеа Галілей эксперыментальна вызначыў, што гэта не так — калі выключыць супраціўленне паветра, то ўсе целы паскараюцца аднолькава. Закон усеагульнага прыцягнення Ісака Ньютана, сфармуляваны ў 1687 годзе, добра апісваў агульныя паводзіны гравітацыі. У 1915 годзе Альберт Эйнштэйн стварыў агульную тэорыю адноснасці, якая больш дакладна апісвае гравітацыю ў тэрмінах геаметрыі прасторы-часу.
Тэорыі гравітацыі
правіцьКвантавыя эфекты гравітацыі надзвычай малыя нават у самых экстрэмальных эксперыментальных і назіраемых умовах, таму да гэтага часу не існуе надзейных эксперыментальных даных аб квантавых праявах гравітацыі. Тэарэтычныя ацэнкі паказваюць, што ў пераважнай большасці выпадкаў можна абмежавацца класічным апісаннем гравітацыйнага ўзаемадзеяння.
Існуе сучасная кананічная класічная тэорыя гравітацыі — агульная тэорыя адноснасці, мноства ўдакладняючых яе гіпотэз і тэорый рознай ступені распрацаванасці, канкуруючых паміж сабой. Усе гэтыя тэорыі даюць вельмі падобныя прадказанні ў рамках таго прыбліжэння, у якім у цяперашні час ажыццяўляюцца эксперыментальныя тэсты.
Агульная тэорыя адноснасці
правіцьУ стандартным падыходзе агульнай тэорыі адноснасці гравітацыя разглядаецца найперш не як сілавое ўзаемадзеянне, а як праява скрыўлення прасторы-часу. Такім чынам, гравітацыя вытлумачваецца як геаметрычны эфект, прычым прастора-час разглядаецца ў рамках нееўклідавай псеўдарыманавай геаметрыі. Гравітацыйнае поле, якое часам называецца полем прыцягнення, атаясамліваецца з тэнзарным метрычным полем — метрыкай чатырохмернай прасторы-часу, а напружанасць гравітацыйнага поля — з афіннай звязнасцю прасторы-часу, вызначаецца метрыкай.
Стандартнай задачай агульнай тэорыі адноснасці з’яўляецца вызначэнне кампанентаў метрычнага тэнзара, якія ў сукупнасці задаюць геаметрычныя ўласцівасці прасторы-часу, па вядомым размеркаванні крыніц энергіі-імпульсу ў разглядаемай сістэме чатырохмерных каардынат. У сваю чаргу веданне метрыкі дазваляе разлічваць рух пробных часціц, што раўназначна веданню ўласцівасцей поля прыцягнення ў гэтай сістэме. У сувязі з тэнзарным характарам ураўненняў, а таксама са стандартным фундаментальным абгрунтаваннем яе фармулёўкі, лічыцца, што гравітацыя таксама носіць тэнзарны характар. Адным з вынікаў з’яўляецца тое, што гравітацыйнае выпраменьванне павінна быць не ніжэйшым за квадрупольны парадак.
Гл. таксама
правіцьЛітаратура
правіць- Тяготе́ние, гравитация, гравитационное взаимодействие / Новиков И. Д. // Т. 26. Тихоходки — Ульяново. — М. : Советская энциклопедия, 1977. — С. 419—423. — (Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров; 1969—1978). (руск.)
- Новиков И. Д. Тяготе́ние (гравитация, гравитационное взаимодействие) // Физика. Большой энциклопедический словарь / Гл. ред. А. М. Прохоров. — 4-е изд. — М.: Большая Российская энциклопедия, 1998. — C. 772—775. — 944 с: ил., 2 л. цв. ил. — ISBN 5—85270—306—0 (БРЭ). (руск.)
- Визгин В. П. Релятивистская теория тяготения. — М.: Навука.
Спасылкі
правіць- На Вікісховішчы ёсць медыяфайлы па тэме Гравітацыя
- Прыцягненне. Фізічная энцыклапедыя
- Закон сусветнага прыцягнення. Па-простаму аб складаным.
- Праблемы гравітацыі. BBC
- Зямля і гравітацыя Архівавана 18 студзеня 2013.