Матэрыяльны пункт: Розніца паміж версіямі

няма тлумачэння праўкі
др (вырашэнне неадназначнасцяў using AWB)
Няма тлумачэння праўкі
Тэгі: Візуальны рэдактар першае рэдагаванне
 
Дапушчальнасць або недапушчальнасць прыняцця цела за матэрыяльны пункт вызначаецца ўмовамі канкрэтнай задачы. Так, напрыклад, [[Планета Зямля|Зямлю]] можна лічыць матэрыяльным пунктам пры разглядзе яе руху вакол [[Сонца]] і нельга — калі разглядаецца яе рух вакол сваёй асі.
 
У вызначэнне матэрыяльнай кропкі мы ўключылі ўмову, што яна павінна быць макраскапічным целам. Гэта зроблена для таго, каб да яе руху можна было ўжываць класічную механіку. Аднак у шэрагу выпадкаў і рух мікрачасцін можа разглядацца на аснове класічнай механікі. Сюды адносяцца, напрыклад, рух электронаў, пратонаў або іёнаў у паскаральніках і электронна-іённых прыборах. У гэтых выпадках мікрачасціны можна разглядаць як матэрыяльныя кропкі класічнай механікі.
 
   Механіка адной матэрыяльнай кропкі або, карацей, механіка кропкі ў класічнай фізіцы з'яўляецца асновай для вывучэння механікі наогул. З класічнай пункту гледжання адвольнае макраскапічнай цела або сістэму тэл можна разумова разбіць на малыя макраскапічныя часткі, якія ўзаемадзейнічаюць паміж сабой. Кожную з такіх частак можна прыняць за матэрыяльную кропку.
 
   Тым самым вывучэнне руху адвольнай сістэмы тэл зводзіцца да вывучэння сістэмы ўзаемадзейнічаюць матэрыяльных кропак. Натуральна таму пачаць вывучэнне класічнай механікі з механікі адной матэрыяльнай кропкі, а затым перайсці да вывучэння сістэмы матэрыяльных кропак.
 
Абярэм якую-небудзь адвольную сістэму адліку і будзем адносіць да яе рух матэрыяльнай кропкі. Рух пункту будзе апісана цалкам, калі будзе вядома яе становішча ў любы момант часу адносна абранай сістэмы адліку. Становішча кропкі мы дамовімся характарызаваць яе прастакутнымі каардынатамі х, у, г, якія з'яўляюцца праекцыямі яе радиуса- вектара г на каардынатныя восі. Поўнае апісанне руху зводзіцца таму да знаходжання трох каардынатаў х, у, г як функцый часу t:
 
x = x(t) , y = y(t) , z = z(t) ,
 
або да знаходжання адной вектарнай функцыі
 
r = r(t).
 
Аднак для фармулёўкі асноўных законаў механікі, з дапамогай якіх тэарэтычна могуць быць знойдзеныя якія разглядаюцца функцыі, істотныя два новых паняцці - паняцце хуткасці і асабліва паняцце паскарэння.
 
== Гл. таксама ==
43

праўкі