Закон вялікіх лікаў
Закон вялікіх лікаў у тэорыі імавернасцей сцвярджае, што эмпірычнае сярэдняе (сярэдняе арыфметычнае) досыць вялікай канчатковай выбаркі з фіксаванага размеркавання блізка да тэарэтычнага сярэдняга (матэматычнага чакання) гэтага размеркавання. У залежнасці ад выгляду збежнасці адрозніваюць слабы закон вялікіх лікаў, калі мае месца збежнасць па імавернасці, і ўзмоцнены закон вялікіх лікаў, калі мае месца збежнасць амаль усюды.
Заўсёды знойдзецца такі канчатковы лік выпрабаванняў, пры якім з любой зададзенай наперад імавернасцю менш за 1 адносная частата з'яўлення некаторай падзеі будзе як заўгодна мала адрознівацца ад яго імавернасці.
Агульны сэнс закона вялікіх лікаў — сумеснае дзеянне вялікай колькасці аднолькавых і незалежных выпадковых фактараў прыводзіць да выніку, які у мяжы не залежыць ад выпадку.
На гэтай уласцівасці заснаваныя метады ацэнкі імавернасці на аснове аналізу канчатковай выбаркі. Наглядным прыкладам з'яўляецца прагноз вынікаў выбараў на аснове апытання выбаркі выбаршчыкаў.
Слабы закон вялікіх лікаў
правіцьХай ёсць бясконцая паслядоўнасць (паслядоўны пералік) аднолькава размеркаваных і некарэляваных выпадковых велічынь , вызначаных на адной імавернаснай прасторы . Гэта значыць іх каварыяцыя . Хай . Пазначым выбарачнае сярэдняе першых членаў:
.
Тады .
Гэта значыць для ўсякага станоўчага ,
Узмоцнены закон вялікіх лікаў
правіцьХай ёсць бясконцая паслядоўнасць незалежных аднолькава размеркаваных выпадковых велічынь , вызначаных на адной імавернаснай прасторы . Хай . Пазначым выбарачнае сярэдняе першых членаў:
- .
Тады амаль заўсёды.
Гэта значыць
Заўвагі
правіцьПрыведзеная фармулёўка слабага закона вялікіх лікаў мяркуе, што выпадковыя велічыні маюць другі момант. Аднак гэта не абавязкова. З ўзмоцненага закона вялікіх лікаў выцякае, што сумы незалежных выпадковых велічынь імкнуцца да нуля і па імавернасці пры ўмове існавання толькі першага моманту.
Літаратура
правіць- Ширяев А. Н. Вероятность, — М.: Наука. 1989.
- Чистяков В. П. Курс теории вероятностей, — М., 1982.