У гэтай старонкі няма правераных версій, хутчэй за ўсё, яе якасць не ацэньвалася на адпаведнасць стандартам.

Цялесны вугал — частка прасторы, якая з’яўляецца аб’яднаннем усіх прамянёў, якія выходзяць з дадзенай кропкі (вяршыні вугла) і перасякаюць некаторую паверхню (якая называецца паверхняй, якая сцягвае дадзены цялесны вугал). Асобнымі выпадкамі цялеснага вугла з’яўляюцца трохгранныя і шматгранныя вуглы. Мяжой цялеснага вугла з’яўляецца некаторая канічная паверхня.

Цялесны вугал
Выява
Вывучаецца ў стэрэаметрыя
ISQ dimension
Формула, якая апісвае закон або тэарэму [1]
Пазначэнне ў формуле , і
Сімвал велічыні (LaTeX)
Рэкамендуемая адзінка вымярэння стэрадыян[2][3][…] і 1[2]
Лагатып Вікісховішча Медыяфайлы на Вікісховішчы
Цялесны вугал

Цялесны вугал вымяраецца адносінай плошчы той часткі сферы з цэнтрам у вяршыні вугла, якая выражаецца гэтым цялесным вуглом, да квадрата радыуса сферы:

Відавочна, цялесныя вуглы вымяраюцца адцягненымі (безразмернымі) велічынямі. Адзінкай вымярэння цялеснага вугла ў сістэме СІ з’яўляецца стэрадыян, роўны цялеснаму вуглу, выразаючаму са сферы радыуса паверхню з плошчай . Поўная сфера ўтварае цялесны вугал, роўны стэрадыян (поўны цялесны вугал), для вяршыні, размешчанай унутры сферы, у прыватнасці, для цэнтра сферы; такім жа з’яўляецца цялесны вугал, пад якім бачна любая замкнёная паверхня з кропкі, якая цалкам ахопліваецца гэтай паверхняй, але не належыць ёй. Акрамя стэрадыянаў, цялесны вугал можа вымярацца ў квадратных градусах, квадратных хвілінах і квадратных секундах, а таксама ў долях поўнага цялеснага вугла.

Цялесны вугал мае нулявую фізічную размернасць.

Пазначаецца цялесны вугал звычайна літарай .

Дваісты цялесны вугал да дадзенага цялеснага вугла вызначаецца як вугал, які складаецца з прамянёў, якія ўтвараюць з любым прамянём вугла нявостры вугал.

Каэфіцыенты пераліку адзінак цялеснага вугла.

Стэрадыян Кв. градус Кв. хвіліна Кв. секунда Поўны вугал
1 стэрадыян =
1
(180/π)² ≈
≈ 3282,806 кв. градусаў
(180×60/π)² ≈
≈ 1,1818103×107 кв. хвілін
(180×60×60/π)² ≈
≈ 4,254517×1010 кв. секунд
1/4π ≈
≈ 0,07957747 поўнага вугла
1 кв. градус = (π/180)² ≈
≈ 3,0461742×10−4 стэрадыян
1
60² =
= 3600 кв. хвілін
(60×60)² =
= 12 960 000 кв. секунд
π/(2×180)² ≈
≈ 2,424068×10−5 поўнага вугла
1 кв. хвіліна = (π/(180×60))² ≈
≈ 8,461595×10−8 стэрадыян
1/60² ≈
≈ 2,7777778×10−4 кв. градусаў
1
60² =
= 3600 кв. секунд
π/(2×180×60)² ≈
≈ 6,73352335×10−9 поўнага вугла
1 кв. секунда = (π/(180×60×60))² ≈
≈ 2,35044305×10−11 стэрадыян
1/(60×60)² ≈
≈ 7,71604938×10−8 кв. градусаў
1/60² ≈
≈ 2,7777778×10−4 кв. хвілін
1
π/(2×180×60×60)² ≈
≈ 1,87042315×10−12 поўнага вугла
Поўны вугал = 4π ≈
≈ 12,5663706 стэрадыян
(2×180)²/π ≈
≈ 41252,96125 кв. градусаў
(2×180×60)²/π ≈
≈ 1,48511066×108 кв. хвілін
(2×180×60×60)²/π ≈
≈ 5,34638378×1011 кв. секунд
1

Вылічэнне цялесных вуглоў

правіць

Для адвольнай сцягвальнай паверхні   цялесны вугал  , пад якім яна бачная з пачатку каардынат, роўны

 

дзе   — сферычныя каардынаты элемента паверхні     — яго радыус-вектар,   — адзінкавы вектар, нармальны да 

Уласцівасці цялесных вуглоў

правіць
  • Поўны цялесны вугал (поўная сфера) роўны   стэрадыян.
  • Сума ўсіх цялесных вуглоў, дваістых да ўнутраных цялесных вуглоў выпуклага шматгранніка, роўная поўнаму вуглу.

Велічыні некаторых цялесных вуглоў

правіць
  • Трохвугольнік з каардынатамі вяршынь  ,  ,   бачны з пачатку каардынат пад цялесным вуглом
 

дзе   — змешаны здабытак дадзеных вектараў,   — скалярны здабытак адпаведных вектараў, паўтлустым шрыфтам пазначаныя вектары, нармальным шрыфтам — іх даўжыні. Па гэтай формуле можна вылічаць цялесныя вуглы, сцягнутыя адвольнымі шматвугольнікамі з вядомымі каардынатамі вяршынь (для гэтага дастаткова разбіць многавугольнік на неперасякальныя трохвугольнікі).

  • Цялесны вугал пры вяршыні прамога кругавога конуса з вуглом раствора α роўны  . Калі вядомы радыус асновы   і вышыня   конуса, то  .

Калі вугал раствора конуса малы,  (  выражана ў радыянах), ці   (  выражана ў градусах). Так, цялесны вугал, пад якім з Зямлі бачныя Месяц і Сонца (іх вуглавы дыяметр прыкладна роўны 0,5°), складае каля 6.10−5 стэрадыян, або ≈ 0,0005 % плошчы нябеснай сферы (гэта значыць поўнага цялеснага вугла).

  • Цялесны вугал двухграннага вугла ў стэрадыянах роўны падвоенаму значэнню двухграннага вугла ў радыянах:
  • Цялесны вугал трохграннага вугла выражаецца па тэарэме Люілье праз яго плоскія вуглы   пры вяршыні як:
 , где   — паўперыметр.
Праз двухгранныя вуглы   цялесны вугал выражаецца як:
 
  • Цялесны вугал пры вяршыні куба (або любога іншага прамавугольнага паралелепіпеда) роўны   поўнага цялеснага вугла, або   стэрадыян.
  • Цялесны вугал, пад якім бачная грань правільнага N-гранніка з яго цэнтра, роўны   поўнага цялеснага вугла, або   стэрадыян.

Гл. таксама

правіць

Зноскі

Спасылкі

правіць