Задача двух цел
У класічнай механіцы, задача двух цел заключаецца ў тым, каб вызначыць рух двух кропкавых часціц, якія ўзаемадзейнічаюць толькі адна з адною. Распаўсюджанымі прыкладамі задачы з'яўляюцца спадарожнік, які рухаецца вакол планеты, а таксама планета, якая рухаецца вакол зоркі, дзве зоркі, якія абарачаюцца вакол агульнага цэнтра мас (падвойная зорка), і класічная мадэль электрона, які рухаецца вакол атамнага ядра.
Задачу двух цел можна прадставіць як дзве незалежныя задачы аднаго цела, дзе разглядаецца рух адной часціцы ў вонкавым патэнцыяльным полі. Многія задачы з адным целам можна развязаць дакладна, таму адпаведную задачу з двума целамі таксама можна развязаць. Але задачу з трыма целамі (а тым больш задачу N цел пры N > 3) за выключэннем асобных выпадкаў дакладна развязаць немагчыма.
Пастаноўка задачы
правіцьНяхай і радыус-вектары двух цел, а і іх масы. Наша мэта: вызначыць траекторыю і для любога часу , пры зададзеных пачатковых каардынатах
і хуткасцях
- .
Другі закон Ньютана ў дачыненні да дадзенай сістэмы сцвярджае, што
дзе
- — сіла, якая дзейнічае на першае цела з-за ўзаемадзеяннем з другім целам,
- — сіла, якая дзейнічае на другое цела з боку першага.
Складаючы і адымаючы гэтыя два ўраўненні, можна раздзяліць адну задачу на дзве задачы з адным целам, якія можна рашыць незалежна. "Складанне" раўнанняў (1) і (2) прыводзіць да раўнання, якое апісвае рух цэнтра мас. У адрозненне ад гэтага, "адыманне" раўнання (2) ад раўнання (1) прыводзіць да раўнання, якое апісвае, як вектар паміж масамі змяняецца з часам. Рашэнне гэтых незалежных задач можа дапамагчы ў знаходжанні траекторый и .
Рух цэнтра мас (першая задача)
правіцьСкладанне раўнанняў (1) і (2) прыводзіць да роўнасці
дзе мы выкарысталі трэці закон Ньютана , і дзе
становішча цэнтра мас сістэмы. У выніку раўнанне прыме выгляд
Яно паказвае, што хуткасць цэнтра мас нязменная. Адсюль вынікае, што поўны імпульс таксама захоўваецца. Становішча і хуткасць цэнтра мас можна атрымаць для любога моманту часу.
Адносны рух (другая задача)
правіцьАдымаючы раўнанне (2) ад раўнання (1) і пераўтвараючы яго, прыходзім да раўнання
дзе мы зноў выкарысталі трэці закон Ньютана і (азначаны вышэй) - вектар адноснага зрушэння, накіраваны ад другога цела да першага.
Сіла паміж двума целамі павінна быць функцыяй толькі , а не абсалютных радыус-вектараў і ; у адваротным выпадку задача не была б сіметрычнай адносна пераносу ў прасторы і часе, а гэта раўназначна таму, што законы фізікі мяняліся б ад кропкі да кропкі. Такім чынам можна запісаць:
дзе -прыведзеная маса
Як толькі мы знойдзем рашэнне для і першапачатковыя траекторыі можна запісаць у выглядзе
як можа быць паказана падстаноўкай ў ўраўненні для і .
Рашэнне задачы двух цел
правіцьЗгодна з трэцім законам Ньютана сілы, з якімі целы дзейнічаюць адно на адно, роўныя па велічыні і процілеглыя па напрамку. Такім чынам, для задачы двух цел можна запісаць
Праінтэграваўшы гэта раўнанне два разы, атрымаем
дзе a і b – некаторыя вектары.
Абазначыўшы праз r становішча (радыус-вектар) цэнтра цяжару двух цел і M - іх агульную масу:
атрымаем
гэта значыць наступнае: цэнтр мас сістэмы рухаецца з пастаяннай хуткасцю.
Запішам сілы, якія дзейнічаюць на кожнае з цел, наступным чынам
- где
Адымаючы другое раўнанне ад першага, атрымаем
- где
Вектарна памнажаючы апошняе раўнанне на r і інтэгруючы, атрымаем
Пастаянны вектар h, які з'яўляецца пастаяннай інтэгравання, называецца кінэтычным момантам сістэмы. Узаемны рух цел адбываецца ў плоскасці, перпендыкулярнай гэтаму вектару. Увядзём сістэму цыліндрычных каардынат r,?, z. Адзінкавыя вектары ўздоўж радыяльнай, трансверсальнай і вертыкальнай восі абазначым як i, j і k. Праекцыі хуткасці на радыяльную і трансверсальную восі складуць
Тады
У левай частцы апошняга выразу стаіць падвоеная плошча трохвугольніка, які апісваецца радыус-вектарам r за адзінку часу. Такім чынам, гэтыя суадносіны з'яўляюцца матэматычным запісам другога закона Кеплера.
Раўнанне (1) памнажаем скалярна на хуткасць і інтэгруем. Атрымаем
Распішам апошні выраз у каардынатах:
Памецім, што
Тады
Інтэгруючы абедзве часткі, атрымаем
Апошні стасунак з'яўляецца выражэннем закону захавання механічнай энергіі ў сістэме.
Рух двух цел у плоскасці
правіцьЦікава, што рух двух цел заўсёды адбываецца ў плоскасці. Вызначым імпульс і момант імпульсу
Хуткасць змянення моманту імпульсу роўная моманту сілы
але законы руху Ньютана выконваюцца для ўсіх фізічных сіл, і кажуць, што сіла, якая дзейнічае паміж двума часціцамі (матэрыяльнымі кропкамі), накіравана па лініі, якая злучае іх, гэта значыць Адсюль і момант імпульсу захоўваецца. Тады вектар зрушэння і хуткасць яго змянення ляжаць у плоскасці, перпендыкулярнай да пастаяннага вектара .
Агульнае рашэнне для сілы, якая залежыць ад адлегласці
правіцьЧаста бывае зручна перайсці ў палярныя каардынаты, бо рух адбываецца ў плоскасці і для многіх фізічных задач сіла ёсць функцыяй радыуса А раз r-кампанента паскарэння раўняецца ураўненне для r-кампаненты вектара зрушэння можна перапісаць у выглядзе
дзе і момант імпульсу захоўваецца. Захаванне вуглавога моманту дазваляе знайсці рашэнне для траекторыі , выкарыстоўваючы замену зменных. Пераходзячы ад да
атрымаем ўраўненне руху
Гэтае ураўненне становіцца квазілінейным пры замене зменных і дамнажэнне абедзвюх частак ўраўнення на
Прымяненне
правіцьДля сіл , адваротна прапарцыйных квадрату адлегласці, такіх як гравітацыя або электрастатыка ў класічнай фізіцы, атрымаем
для некаторых канстант , ўраўненне для траекторый становіцца лінейным
Рашэнне гэтага ўраўнення
дзе і - пастаянныя. Гэтае рашэнне паказвае, што арбіта ўяўляе сабой канічнае сячэнне, г.зн. эліпс, гіпербалу або парабалу, у залежнасці ад таго меншая за выраз , большая ці роўная яму.
Нармальная арбіта любога цела, захопленага прыцягненнем іншага цела, уяўляе сабой эліпс або акружнасць - іменна такія арбіты мы назіраем у Сонечнай сістэме. Аднак агульная тэорыя адноснасці сцвярджае, што ў наваколлі вельмі масіўных цел - там, дзе прастора аказваецца моцна скрыўленая дзякуючы наяўнасці каласальнага гравітацыйнага поля спектр магчымых стабільных арбіт значна пашыраецца. У падобных умовах фізічныя аб'екты пачынаюць паводзіць сябе вельмі дзіўна. Напрыклад, цела можа падляцець да чорнай дзіркі па крутой парабале, зрабіць вакол яе некалькі імклівых кароткіх віткоў, а затым зноў закласці выцягнутую пятлю - і гэтак далей.
Прыклад
правіцьЛюбая класічная сістэма, якая складаецца з двух часціц, па азначэнню задача двух цел. У многіх выпадках, аднак, адно цела шмат цяжэйшае за другое, як напрыклад у сістэме Зямлі і Сонца. У такіх выпадках больш цяжкая часціца выконвае ролю цэнтра мас і задача зводзіцца да задачы аб руху аднаго цела ў патэнцыяле другога.[1]. Пры гэтым варта не губляць з ўвазе, што з'яўляецца рызыка страты патрэбнай дакладнасці разлікаў пры злоўжыванні гэтым спрашчэннем. У прыватнасці, знаходжанне месца цэнтра кручэння ў больш масіўным целе расплывісте, у рэаліях яшчэ патрэбен ўлік іншых целаў і палёў. Патрэбен папярэдні аналіз, асабліва пры разліку устояных і стацыянарных арбіт: шматразовае кручэнне непазбежна назапасіць недакладнасці да непрымальнай велічыні памылкі.
Гл. таксама
правіцьЗноскі
- ↑ David Shiga. 'Periodic table' organises zoo of black hole orbits(недаступная спасылка). NewScientist.com (13 лютага 2008). Архівавана з першакрыніцы 3 чэрвеня 2012. Праверана 6 ліпеня 2013.
Літаратура
правіць- Курс тэарэтычнай фізікі Ландау і Ліфшыца
- H. Goldstein, (1980) Classical Mechanics, 2nd. ed., Addison-Wesley. ISBN 0-201-02918-9