Аксіёмы геаметрыі
Аксіё́мы геаме́трыі – набор аксіём, якія складаюць лагічную аснову геаметрыі (яе аксіяматыку). Аксіёмы прызнаюцца як сапраўдныя сцверджанні, якія не патрабуюць доказу. Усе іншыя палажэнні геаметрыі даказваюцца (лагічна выводзяцца) з яе аксіём.
Аксіяматыка ЕўклідаПравіць
Старажытнагрэчаскі матэматык Еўклід (III ст. да н.э.) быў першым, хто распрацаваў сістэму геаметрычных аксіём (пастулатаў). Аксіяматыка Еўкліда складаецца з пяці пастулатаў:
- праз любыя два пункты можна правесці адну, і толькі адну, прамую
- любы адрэзак можна прадоўжыць, каб атрымаць прамую
- праз любы адрэзак можна правесці акружнасць так, што гэты адрэзак будзе яе радыусам, а адзін з яго канцоў – цэнтрам
- усе прымыя вуглы роўныя між сабой
- праз любы пункт, што не належыць да прамой, можна правесці прамую, якая не перасякае яе.
Аксіяматыка ГільбертаПравіць
У 1899 г. нямецкі матэматык Д. Гільберт прапанаваў больш дасканалую сістэму з 21 аксіёмы, падзеленай на пяць груп: