Ураўненні Эйнштэйна
Ураўненні Эйнштэйна (часам сустракаецца назва «ураўненні Эйнштэйна-Гільберта»[1]) — ураўненні гравітацыйнага поля ў агульнай тэорыі адноснасці, якія звязваюць паміж сабой метрыку скрыўленай прасторы-часу з уласцівасцямі матэрыі, што запаўняе яе. Тэрмін выкарыстоўваецца і ў адзіночным ліку: «ураўненне Эйнштэйна», бо ў тэнзарным запісе гэта адно ўраўненне, хоць у кампанентах уяўляе сабой сістэму ўраўненняў.
Выглядаюць ураўненні наступным чынам:
дзе — тэнзар Рычы, які атрымліваецца з тэнзара крывізны прасторы-часу пры дапамозе згорткі яго па пары індэксаў, R — скалярная крывізна, гэта значыць згорнуты тэнзар Рычы, — метрычны тэнзар, — касмалагічная пастаянная, а уяўляе сабой тэнзар энергіі-імпульсу матэрыі, ( — лік пі, c — хуткасць святла ў вакууме, G — гравітацыйная пастаянная Ньютана). Ва ўраўненні ўсе тэнзары сіметрычныя, таму ў чатырохмернай прасторы-часе гэтыя ўраўненні раўнасільныя 4·(4+1)/2=10 скалярным ураўненням.
Адной з істотных уласцівасцей ураўненняў Эйнштэйна з'яўляецца іх нелінейнасць, з-за якой прыводзіць да немагчымасці выкарыстання пры іх рашэнні прынцыпу суперпазіцыі.
Зноскі
- ↑ Сам Гільберт ніколі не прэтэндаваў на аўтарства гэтых ураўненняў і безумоўна прызнаваў прыярытэт Эйнштэйна. Гл. падрабязнасці ў артыкуле: Альберт Эйнштэйн#Гільберт і ўраўненні гравітацыйнага поля.