У гэтай старонкі няма правераных версій, хутчэй за ўсё, яе якасць не ацэньвалася на адпаведнасць стандартам.

Спін (ад англ.: spin — круціць, кручэнне) — уласны момант імпульсу элементарных часціц, які мае квантавую прыроду і не звязаны з перамяшчэннем часціцы як цэлага. Спінам называюць таксама ўласны момант імпульсу атамнага ядра ці атама; у гэтым выпадку спін вызначаецца як вектарная сума (вылічаная па правілах складання момантаў у квантавай механіцы) спінаў элементарных часціц, якія ўтвараюць сістэму, і арбітальных момантаў гэтых часціц, абумоўленых іх рухам унутры сістэмы.

Спін вымяраецца ў адзінках ħ (прыведзенай пастаяннай Планка, або пастаяннай Дзірака) і роўны дзе J — характэрны для кожнага віду часціц цэлы (у тым ліку нулявы) або паўцэлы дадатны лік — так званы спінавы квантавы лік, які звычайна называюць проста спінам (адзін з квантавых лікаў).

У сувязі з гэтым кажуць аб цэлым або паўцэлым спіне часціцы.

Існаванне спіна ў сістэме ўзаемадзейных тоесных часціц з'яўляецца прычынай новай квантавамеханічнай з'явы, якая не мае аналогіі ў класічнай механіцы: абменнага ўзаемадзеяння.

Уласцівасці спіна

правіць

Любая часціца можа валодаць двума відамі вуглавога моманту: арбітальным вуглавым момантам і спінам.

У адрозненне ад арбітальнага вуглавога моманту, які спараджаецца рухам часціцы ў прасторы, спін не звязаны з рухам ў прасторы. Спін — гэта ўнутраная, выключна квантавая характарыстыка, якую нельга растлумачыць у рамках рэлятывісцкай механікі. Калі прадстаўляць часціцу (напрыклад, электрон) як шарык, што верціцца, а спін як момант, звязаны з гэтым кручэннем, то аказваецца, што папярочная скорасць руху абалонкі часціцы павінна быць вышэй за скорасць святла, што недапушчальна з пазіцыі рэлятывізму.

Будучы адной з праяў вуглавога моманту, спін у квантавай механіцы апісваецца вектарным аператарам спіна   алгебра кампанента якога цалкам супадае з алгебрай аператараў арбітальнага вуглавога моманту  . Аднак, у адрозненне ад арбітальнага вуглавога моманту, аператар спіна не выражаецца праз класічныя зменныя, іншымі словамі, гэта толькі квантавая велічыня. Следствам гэтага з'яўляецца той факт, што спін (і яго праекцыі на якую-небудзь вось) можа прымаць не толькі цэлыя, але і паўцелыя значэнні (у адзінках пастаяннай Дзірака ħ).

Прыклады

правіць

Ніжэй паказаныя спіны некаторых мікрачасціц.

спін агульная назва часціц прыклады
0 скалярныя часціцы π-мезоны, K-мезоны, хігсаўскі базон, атамы і ядра 4He, цотна-няцотныя ядра, парапазітроній
1/2 спінарныя часціцы электрон, кваркі, мюон, тау-лептон, нейтрына, пратон, нейтрон, атамы і ядра 3He
1 вектарныя часціцы фатон, глюон, W- і Z-базоны, вектарныя мезоны, ортапазітроній
3/2 спін-вектарныя часціцы Ω-гіперон, Δ-рэзанансы, гравіціна
2 тэнзарныя часціцы гравітон, тэнзарныя мезоны

На ліпень 2004 года, максімальны спін сярод вядомых барыёнаў мае барыённы рэзананс Δ(2950) са спінам 152. Спін ядраў можа перавышаць 20 

Гісторыя

правіць

У 1921 вопыт Штэрна — Герлаха пацвердзіў наяўнасць у атамаў спіна і факт прасторавага квантавання напрамку іх магнітных момантаў.

У 1924 годзе, яшчэ да дакладнай фармулёўкі квантавай механікі, Вольфганг Паўлі ўводзіць новую, двухкампанентную ўнутраную ступень свабоды для апісання валентных электронаў у шчолачных металах. У 1927 годзе ён жа мадыфікуе нядаўна адкрытае ўраўненне Шродзінгера для ўліку спінавай зменнай. Мадыфікаванае такім чынам ураўненне носіць цяпер назву ўраўненне Паўлі. Пры такім апісанні ў электрона з'яўляецца новая спінавая частка хвалевай функцыі, якая апісваецца спінарам — «вектарам» у абстрактнай (гэта значыць не звязаным прама з звычайным) двухмернай спінавай прасторы.

У 1928 годзе Поль Дзірак будуе рэлятывісцкую тэорыю спіна і ўводзіць ужо чатырохкампанентную велічыню — біспінар.

Матэматычна тэорыя спіна аказалася вельмі празрыстай, і ў далейшым па аналогіі з ёй была пабудаваная тэорыя ізаспіна.

Спін і магнітны момант

правіць

Нягледзячы на тое, што спін не звязаны з рэальным кручэннем часціцы, ён тым не менш спараджае пэўны магнітны момант, а значыць, прыводзіць да дадатковага (у параўнанні з класічнай электрадынамікай) узаемадзеяння з магнітным полем. Адносіна велічыні магнітнага моманту да велічыні спіна называецца гірамагнітнай адносінай, і, у адрозненне ад арбітальнага вуглавога моманту, яна не роўная магнетону ( ):

 

Уведзены тут множнік g называецца g-фактарам часціцы; значэнні гэтага g-фактара для розных элементарных часціц актыўна даследуюцца ў фізіцы элементарных часціц.

Спін і статыстыка

правіць

З прычыны таго, што ўсе элементарныя часціцы аднаго і таго ж гатунку тоесныя, хвалевая функцыя сістэмы з некалькіх аднолькавых часціц павінна быць альбо сіметрычнай (гэта значыць не змяняецца), альбо антысіметрычнай (дамнажаецца на -1) адносна перастаноўкі месцамі двух любых часціц. У першым выпадку кажуць, што часціцы падпарадкоўваюцца статыстыцы Бозэ — Эйнштэйна і называюцца базонамі. У другім выпадку часціцы апісваюцца статыстыкай Фермі — Дзірака і называюцца ферміёнамі.

Аказваецца, што іменна значэнне спіна часціцы кажа пра тое, якія будуць гэтыя сіметрыйныя ўласцівасці. Сфармуляваная Вольфгангам Паўлі ў 1940 годзе тэарэма аб сувязі спіна са статыстыкай сцвярджае, што часціцы з цэлым спінам (s = 0, 1, 2, …) з'яўляюцца базонамі, а часціцы з паўцэлым спінам (s = 12, 32, …) — ферміёнамі.

Абагульненне спіна

правіць

Увядзенне спіна з'явілася ўдалым прымяненнем новай фізічнай ідэі: пастуляванне таго, што існуе прастора станаў, ніяк не звязаных з перамяшчэннем часціцы ў звычайнай прасторы. Абагульненне гэтай ідэі ў ядзернай фізіцы прывяло да паняцця ізатапічнага спіна, які дзейнічае ў адмысловай ізаспінавай прасторы. У далейшым, пры апісанні моцных узаемадзеянняў былі ўведзеныя ўнутраная каляровая прастора і квантавы лік «колер» — больш складаны аналаг спіна.

Спін класічных сістэм

правіць

Паняцце спіна было ўведзена ў квантавай тэорыі. Тым не менш, у рэлятывісцкай механіцы можна вызначыць спін класічнай (не квантавай) сістэмы як уласны момант імпульсу [1]. Класічны спін з'яўляецца 4-вектарам і вызначаецца наступным чынам:

 

дзе

  •   — тэнзар поўнага моманту імпульсу сістэмы (сумаванне праводзіцца па ўсіх часціцах сістэмы);
  •   — сумарная 4-скорасць сістэмы, вызначаная пры дапамозе сумарнага 4-імпульсу   і масы M сістэмы;
  •   — тэнзар Леві-Чывіты.

У сілу антысіметрыі тэнзар Леві-Чывіты, 4-вектар спіна заўсёды артаганальны да 4-скорасці  . У сістэме адліку, у якой сумарны імпульс сістэмы роўны нулю, прасторавыя кампаненты спіна супадаюць з вектарам моманту імпульсу, а часовая кампанента роўная нулю.

Іменна таму спін называюць уласным момантам імпульсу.

У квантавай тэорыі поля гэта вызначэнне спіна захоўваецца. У якасці моманту імпульсу і сумарнага імпульсу выступаюць інтэгралы руху адпаведнага поля. У выніку працэдуры другаснага квантавання 4-вектар спіна становіцца аператарам з дыскрэтнымі ўласнымі значэннямі.

Гл. таксама

правіць

Зноскі

  1. Вейнберг С. Гравитация и космология. — M.: Мир, 1975.

Літаратура

правіць

Спасылкі

правіць