G2 (матэматыка)
У матэматыцы G2 — назва некалькіх груп Лі і звязанай з імі алгебры Лі . Гэта найменшая з пяці асаблівых простых груп Лі. G2 мае ранг 2 і размернасць 14. Усе яе нетрывіяльныя канечнамерныя лінейныя прадстаўленні з’яўляюцца дакладнымі. Найбольш простае прадстаўленне 7-мернае і з’яўляецца фундаментальным прадстаўленнем, якое адпавядае кароткаму кораню сістэмы каранёў G2.
Група, алгебра | ||||
Тэорыя груп
| ||||
Кампактная форма G2 з’яўляецца групай аўтамарфізмаў алгебры актаніёнаў (актаў). Яе можна таксама разглядаць як падгрупу групы SO(7), якая пакідае на месцы фіксаваны 8-мерны спінар (у яе спінарным прадстаўленні).
Рэалізацыі
правіцьІснуюць 3 простыя рэчаісныя алгебры Лі, асацыяваныя з дадзенай сістэмай каранёў:
- Рэчаісная алгебра Лі, якая ляжыць у аснове комплекснай алгебры Лі G2, 28-мерная і адназвязная. Комплекснае спалучэнне з’яўляецца яе вонкавым аўтамарфізмам. Максімальная кампактная падгрупа асацыяванай з гэтай алгебрай групы і ёсць кампактная форма G2.
- Алгебра Лі ў кампактнай форме мае размернасць 14. Асацыяваная група Лі не мае знешніх аўтамарфізмаў, цэнтра і з’яўляецца адназвязнай і кампактнай.
- Алгебра Лі ў некампактнай (падзеленай) форме змяшчае 14 вымярэнняў. Асацыяваная простая група Лі мае фундаментальную групу 2 парадку, а яе група знешніх аўтамарфізмаў — трывіяльная група. Яе максімальная кампактная падгрупа — SU(2)×SU(2)/(−1×−1). Для дадзенай групы існуе неалгебраічная падвойная універсальная накрывальная група (адназвязная).
Алгебраічныя ўласцівасці
правіцьНягледзячы на тое, што каранёвыя вектары можна размясціць у 2-мернай прасторы, больш сіметрычным выглядае іх выраз трыма каардынатамі, сума якіх роўная нулю:
- (1,−1,0), (−1,1,0)
- (1,0,−1), (−1,0,1),
- (0,1,−1), (0,−1,1),
- (2,−1,−1), (−2,1,1),
- (1,−2,1), (−1,2,−1),
- (1,1,−2), (−1,−1,2),
і простыя дадатныя каранёвыя вектары
- (0,1,−1), (1,−2,1).
Для алгебры G2 гэта — група дыэдра D12 12 парадка.
Спецыяльныя галаноміі
правіцьG2 — адна з тых спецыяльных груп, якія могуць быць групамі галаноміі рыманавай метрыкі. Разнастайнасці, якія валодаюць G2-галаноміяй, называюцца G2-разнастайнасцямі.
Спасылкі
правіць- en:John Baez, The Octonions, Section 4.1: G2, Bull. Amer. Math. Soc. 39 (2002), 145—205. Анлайн HTML версія.