Поле (фізіка)
Поле — фізічная велічыня, якая прымае нейкія значэнні ў кожным пункце ў прасторы і часе[1]. Напрыклад, у прагнозах надвор’я хуткасць ветру апісваецца ў кожным пункце прасторы вектарам. Кожны такі вектар паказвае хуткасць і напрамак руху паветра ў дадзеным пункце.
Палі падзяляюцца на скалярныя, вектарныя, спінарныя або тэнзарныя, згодна з тым, якія значэнні прымае поле — скалярныя, вектарныя, спінарныя ці тэнзарныя, адпаведна. Напрыклад, Ньютанава гравітацыйнае поле ёсць вектарнае поле: яго значэнне ў пункце прасторы-часу задаецца трыма лікамі, кампанентамі вектара гравітацыйнага поля ў гэтым пункце. Больш за тое, у кожнай катэгорыі (скалярныя, вектарныя, тэнзарныя), поле можа быць ці класічным, ці квантавым, у залежнасці ад таго, як яно апісваецца: лікамі ці квантавымі аператарамі.
Можна ўяўляць, што поле распаўсюджваецца скрозь прастору. На практыцы, напружанасць усіх вядомых палёў спадае і ў некаторым пункце становіцца настолькі малой, што не выяўляецца прыборамі. Напрыклад, у Ньютанавай тэорыі гравітацыі напружанасць гравітацыйнага поля адваротна прапарцыянальная квадрату адлегласці ад гравітуючага цела. У выніку гравітацыйнае поле Зямлі хутка становіцца невыяўляльным на касмічных адлегласцях.
Абстрактнае вызначэнне поля як «лікаў у прасторы» не павінна адцягваць ад ідэі, што поле мае рэальны фізічны сэнс. «Яно займае прастору. Яно ўтрымлівае энергію. Яго наяўнасць выключае сапраўдны вакуум»[2]. Поле стварае «ўмовы ў прасторы»[3] , якія «адчуваюцца» змешчанаю ў поле часціцаю.
Калі электрычны зарад паскараецца, на іншым зарадзе гэта не праяўляецца імгненна. Першы зарад пад дзеяннем сілы набірае імпульс, але другі не адчувае ніякага ўздзеяння, пакуль індукцыя, якая распаўсюджваецца з хуткасцю святла, не дасягне яго і не перадасць яму імпульс. Дзе ў гэты час знаходзіцца імпульс? Згодна з законам захавання імпульсу ён павінен недзе быць. Фізікі лічаць «вельмі зручным пры аналізе сіл»[3] думаць, што імпульс знаходзіцца ў полі.
Гэта зручнасць дае фізікам аснову для ўпэўненасці, што электрамагнітнае поле сапраўды існуе, і робіць паняцце поля адным з краевугольных камянёў усяго будынка сучаснай фізікі. Тым не менш, Джон Уілер і Рычард Фейнман сур’ёзна разглядалі Ньютанаўскую да-палявую ідэю дзеяння на адлегласці (хоць і пакідалі яе ўбаку з тае прычыны, што ідэя поля вельмі карысная для даследаванняў у агульнай тэорыі адноснасці і квантавай электрадынаміцы).
«Той факт, што электрамагнітнае поле можа валодаць імпульсам і энергіяй, робіць яго вельмі рэальным… часціца стварае поле, а поле дзейнічае на іншую часціцу, і палі маюць такія ўласцівасці як запас энергіі і імпульс, якраз як часціцы»[3].
Гісторыя
правіцьЗакон сусветнага прыцягнення, сфармуляваны Ісаакам Ньютанам, проста выражае гравітацыйную сілу, якая дзейнічае паміж любой парай масіўных цел. Калі разглядаць рух мноства цел, якія ўсе ўзаемадзейнічаюць адно з адным, як напрыклад, планеты Сонечнай сістэмы, то мець справу з сілай паміж кожнай параю цел паасобку хутка становіцца вылічальна нязручным. У XIX стагоддзі, каб спрасціць улік усіх гэтых гравітацыйных сіл, была вынайдзена новая сутнасць. Гэта сутнасць, гравітацыйнае поле, дае ў кожным пункце прасторы поўную гравітацыйную сілу, якая б дзейнічала на цела адзінкавай масы ў гэтым пункце. Гэта ніяк не мяняла фізіку: не мае значэння, вылічаеце вы ўсе гравітацыйныя сілы паасобку і затым складаеце іх разам, ці спачатку ўлічваеце ўсе ўклады разам як гравітацыйнае поле і затым прыкладаеце яго да аб’екта[4].
Развіццё незалежнай ідэі поля па-сапраўднаму пачалося ў XIX стагоддзі з развіццём тэорыі электрамагнетызму. На ранніх стадыях, Андрэ Мары Ампер і Шарль Агюстэн дэ Кулон маглі абыходзіцца законамі ў стылі Ньютана для выражэння сіл паміж парамі электрычных зарадаў ці электрычных токаў. Аднак, стала больш натуральным прыняць палявы падыход і выразіць гэтыя законы ў тэрмінах электрычнага і магнітнага палёў; у 1849 Майкл Фарадэй упершыню ўвёў тэрмін «поле»[4].
Незалежная прырода поля стала больш відавочнаю з Максвелавым адкрыццём, што хвалі ў гэтых палях распаўсюджваюцца з канечнаю хуткасцю. У выніку, сілы, дзеючыя на зарады і токі, цяпер залежаць не толькі ад становішча і хуткасці іншых зарадаў і токаў у дадзены час, але і ад іх становішча і хуткасці ў мінулым[4].
Спачатку Максвел не разглядаў поле ў сучасным сэнсе як фундаментальную сутнасць, якая можа існаваць незалежна. Замест гэтага ён думаў, што электрамагнітнае поле выражае дэфармацыю некаторага асяроддзя-асновы — святланоснага эфіру — шмат у чым падобную да напружання ў гумавай мембране. Калі б так было, назіраная хуткасць электрамагнітных хваль павінна была б залежаць ад хуткасці назіральніка адносна эфіру. Нягледзячы на мноства спроб, ніякіх эксперыментальных пацвярджэнняў падобнага эфекту знойдзена не было; сітуацыя развязалася са стварэннем спецыяльнай тэорыі адноснасці Альбертам Эйнштэйнам у 1905 годзе. Гэта тэорыя пастулявала, што хуткасць электрамагнітных хваль з тэорыі Максвела павінна быць аднолькаваю для ўсіх назіральнікаў. Здымаючы патрэбу ў фонавым асяроддзі, гэты вывад адкрыў фізікам шлях для ўспрымання палёў як сапраўды незалежных сутнасцей[4].
У канцы 1920-х новыя прынцыпы квантавай механікі былі ўпершыню прыменены да электрамагнітных палёў. У 1927 годзе Поль Дзірак з дапамогай квантавых палёў паспяхова растлумачыў, як пераход атама ў ніжэйшы квантавы стан прыводзіць да спантаннага выпраменьвання фатона, кванта электрамагнітнага поля. За гэтым скора прыйшло ўсведамленне (пасля прац Паскуаля Ёрдана, Юджына Вігнера, Вернера Гейзенберга і Вольфганга Паўлі), што ўсе часціцы, уключаючы электроны і пратон, можна разумець як кванты некаторых квантавых палёў. Тым самым палі падняліся да статусу самага фундаментальнага аб’екта ў прыродзе[4].
Класічныя палі
правіцьЁсць некалькі прыкладаў класічных палёў. Класічныя тэорыі поля застаюцца прыдатнымі ўсюды, дзе не праяўляюцца квантавыя ўласцівасці, і могуць быць абласцямі актыўных даследаванняў. У якасці прыкладаў можна прывесці тэорыю пругкасці матэрыялаў, гідрадынаміку і ўраўненні Максвела.
Аднымі з самых простых фізічных палёў з’яўляюцца вектарныя сілавыя палі. Гістарычна, упершыню сур’ёзна разглядаць палі пачаў Майкл Фарадэй, які з дапамогай сілавых ліній паспрабаваў апісаць электрычнае поле. Затым падобным жа чынам было апісана гравітацыйнае поле.
Ньютанаўская гравітацыя
правіцьКласічная тэорыя гравітацыі Ньютана апісвае гравітацыйную сілу як узаемадзеянне паміж дзвюма масамі.
Любое масіўнае цела M мае гравітацыйнае поле g, якое апісвае ўздзеянне цела на іншыя масіўныя аб’екты. Гравітацыйнае поле цела M у пункце r прасторы вызначаюць як адносіну сілы F, з якою M дзейнічае на малую пробную масу m, змешчаную ў пункт r, да пробнай масы m:[5]
Патрабаванне, каб m была значна меншая за M, гарантуе, што прысутнасць m толькі нязначна ўплывае на цела M.
Згодна з Ньютанавым законам гравітацыі, сіла прыцягнення F(r) задаецца так[5]
дзе — адзінкавы вектар, накіраваны ад m да М уздоўж прамой, якая іх злучае. Такім чынам, напружанасць гравітацыйнага поля масы M раўняецца[5]
Эксперыментальнае назіранне, што інертная і гравітацыйная масы роўныя з надзвычай высокаю ступенню дакладнасці, дазваляе атоесніць напружанасць гравітацыйнага поля з паскарэннем часціцы ў гэтым полі. Гэта стала зыходным пунктам прынцыпу эквівалентнасці і падштурхнула да развіцця агульнай тэорыі адноснасці.
Паколькі гравітацыйная сіла F з’яўляецца кансерватыўнаю, гравітацыйнае поле g можна апісаць як градыент скалярнай функцыі — гравітацыйнага патэнцыялу Φ(r):
Электрамагнетызм
правіцьМайкл Фарадэй першы ўсвядоміў важнасць палёў як фізічных аб’ектаў, даследуючы праявы магнетызму. Ён зразумеў, што электрычнае і магнітнае палі з’яўляюцца не толькі палямі сіл, якія кіруюць рухам часціц, але і самастойнымі фізічнымі аб’ектамі, якія пераносяць энергію.
Гэтыя ідэі ў выніку прывялі да стварэння першай аб’яднанай тэорыі поля ў фізіцы, калі Джэймс Клерк Максвел сфармуляваў ўраўненні электрамагнітнага поля, якія цяпер носяць яго імя.
Электрастатыка
правіцьНа зараджаную пробную часціцу дзейнічае сіла F, звязаная выключна з зарадам q часціцы. Можна апісаць электрычнае поле E так, каб F = qE. Адсюль і з закона Кулона атрымліваем напружанасць электрычнага поля як сілу, якая дзейнічае на адзінкавы пробны зарад
Электрычнае поле з’яўляецца патэнцыяльным, і таму яго можна апісаць скалярным патэнцыялам, V(r):
Магнітастатыка
правіцьПастаянны ток I, які цячэ па шляху ℓ, стварае сілу, якая дзейнічае на размешчаныя побач зараджаныя часціцы і колькасна адрозніваецца ад сілы электрычнага поля, апісанай вышэй. Сіла, з якою ток I ўздзейнічае на размешчаны побач зарад q, які рухаецца з хуткасцю v, раўняецца
дзе B(r) — магнітнае поле, якое вызначаецца токам I па закону Біё — Савара — Лапласа:
Магнітнае поле ўвогуле кажучы не кансерватыўнае, і таму яго, як правіла, нельга запісаць праз скалярны патэнцыял. Тым не менш, яго можна выразіць у тэрмінах вектарнага патэнцыялу, A(r):
Гл. таксама
правіцьЗноскі
правіць- ↑ John Gribbin (1998). Q is for Quantum: Particle Physics from A to Z. London: Weidenfeld & Nicolson. p. 138. ISBN 0-297-81752-3.
- ↑ John Archibald Wheeler (1998). Geons, Black Holes, and Quantum Foam: A Life in Physics. London: Norton. p. 163.
- ↑ а б в Richard P. Feynman (1963). Feynman's Lectures on Physics, Volume 1. Caltech.
- ↑ а б в г д Weinberg, Steven (1977). "The Search for Unity: Notes for a History of Quantum Field Theory". Daedalus. 106 (4): 17–35. JSTOR 20024506.
- ↑ а б в Kleppner, David; Kolenkow, Robert. An Introduction to Mechanics. p. 85.
Далейшае чытанне
правіць- Landau, Lev D. and Lifshitz, Evgeny M. (1971). Classical Theory of Fields (3rd ed.). London: Pergamon. ISBN 0-08-016019-0. Vol. 2 of the Course of Theoretical Physics.
Спасылкі
правіць- Particle and Polymer Field Theories Архівавана 3 мая 2008.