Ураўненні Максвела

Ураўне́нні Ма́ксвела — сістэма ўраўненняў у дыферэнцыяльнай або інтэгральнай форме, якія апісваюць электрамагнітнае поле і яго сувязь з электрычнымі зарадамі і токамі ў вакууме і суцэльных асяроддзях. Разам з выразам для сілы Лорэнца, што задае меру ўздзеяння электрамагнітнага поля на зараджаныя часціцы, ураўненні Максвела ўтвараюць поўную сістэму ўраўненняў класічнай электрадынамікі, якую часам называюць ураўненнямі Максвела — Лорэнца. Ураўненні, сфармуляваныя Джэймсам Клеркам Максвелам на аснове назапашаных к сярэдзіне XIX стагоддзя эксперыментальных вынікаў, адыгралі ключавую ролю ў развіцці ўяўленняў тэарэтычнай фізікі і аказалі моцны, у некаторых выпадках вырашальны, уплыў не толькі на ўсе вобласці фізікі, непасрэдна звязаныя з электрамагнетызмам, але і на многія пазнейшыя фундаментальныя тэорыі, прадмет якіх не зводзіўся да электрамагнетызму (адным з самых яскравых прыкладаў тут можа служыць спецыяльная тэорыя адноснасці).

Электрадынаміка
Электрычнасць · Магнетызм

Гісторыя

правіць
 
Джэймс Клерк Максвел

Ураўненні, сфармуляваныя Джэймсам Клеркам Максвелам, узніклі на аснове шэрага важных эксперыментальных адкрыццяў пачатку XIX стагоддзя. У 1820 годзе Ганс Хрысціян Эрстэд выявіў[1], што гальванічны ток, які прапускаецца праз провад, прымушае адхіляцца магнітную стрэлку компаса. Гэта адкрыццё прыцягнула шырокую ўвагу навукоўцаў таго часу. У тым жа 1820 Біё і Савар эксперыментальна знайшлі выраз[2] для спароджанай токам магнітнай індукцыі (закон Біё — Савара), і Андрэ Мары Ампер выявіў, што ўзаемадзеянне на адлегласці ўзнікае таксама паміж двума праваднікамі, па якіх прапускаецца ток. Ампер ўвёў тэрмін «электрадынамічны» і выказаў гіпотэзу, што прыродны магнетызм звязаны з існаваннем у магнітах кругавых токаў[3].

Уплыў току на магніт, выяўлены Эрстэдам, прывёў Майкла Фарадэя да ідэі аб тым, што павінен існаваць і адваротны ўплыў магніта на токі. Пасля працяглых эксперыментаў, ў 1831 годзе, Фарадэй адкрыў, што магніт, які перамяшчаецца каля правадніка, спараджае ў правадніку электрычны ток. Гэта з’ява была названа электрамагнітнай індукцыяй. Фарадэй увёў паняцце «поля сіл» — пэўнага асяроддзя, якое знаходзіцца паміж зарадамі і токамі. Яго разважанні насілі якасны характар, але яны аказалі вялікі ўплыў на даследаванні Максвела.

Пасля адкрыццяў Фарадэя стала ясна, што старыя мадэлі электрамагнетызму (Ампера, Пуасона і інш.) няпоўныя. Неўзабаве з’явілася тэорыя Вебера, заснаваная на дальнадзеянні. Аднак на той момант уся фізіка, акрамя тэорыі прыцягнення, мела справу толькі з блізкадзеючымі сіламі (оптыка, тэрмадынаміка, механіка суцэльных асяроддзяў і інш.). Гаус, Рыман і шэраг іншых навукоўцаў выказвалі здагадкі, што святло мае электрамагнітную прыроду, так што тэорыя электрамагнітных з’яў таксама павінна быць блізкадзеючай. Гэты прынцып стаў істотнай асаблівасцю тэорыі Максвела.

У сваім знакамітым «Трактаце аб электрычнасці і магнетызме» (1873) Максвел пісаў[4]:

Прыступаючы да вывучэння працы Фарадэя, я выявіў, што яго метад разумення з’яў таксама быў матэматычным, хоць і не прадстаўленым у форме звычайных матэматычных знакаў. Я таксама знайшоў, што гэты метад можна выказаць у звычайнай матэматычнай форме і такім чынам параўнаць з метадамі прафесійных матэматыкаў.

Замяняючы фарадэеўскі тэрмін «поле сіл» на паняцце «напружанасць поля», Максвел зрабіў яго ключавым аб’ектам сваёй тэорыі[5]:

Калі мы прымем гэта асяроддзе ў якасці гіпотэзы, я лічу, што яно павінна займаць выдатнае месца ў нашых даследаваннях, і што нам варта было б паспрабаваць сканструяваць рацыянальнае ўяўленне аб ўсіх дэталях яго дзеяння, што і было маёй пастаяннай мэтай у гэтым трактаце.

Падобная электрадынамічнае асяроддзе стала абсалютна новым паняццем для ньютанаўскай фізікі. Апошняя вывучала ўзаемадзеянне паміж сабой матэрыяльных цел. Максвел жа запісаў ураўненні, якім павінна падпарадкоўвацца асяроддзе, якое вызначае ўзаемадзеянне зарадаў і токаў і існуе нават у іх адсутнасць.

 
Электрычны ток стварае магнітную індукцыю (закон Ампера)

Аналізуючы вядомыя эксперыменты, Максвел атрымаў сістэму ўраўненняў для электрычнага і магнітнага палёў. У 1855 годзе ў сваім самым першым артыкуле «Аб фарадэевых сілавых лініях»[6] («On Faraday’s Lines of Force»[7]) ён упершыню запісаў у дыферэнцыяльнай форме сістэму ўраўненняў электрадынамікі, але не ўводзячы яшчэ ток зрушэння. Такая сістэма ўраўненняў апісвала ўсе вядомыя на той час эксперыментальныя дадзеныя, але не дазваляла звязаць паміж сабой зарады і токі і прадказаць электрамагнітныя хвалі[8]. Упершыню ток зрушэння быў ​​уведзены Максвелам у працы «Аб фізічных сілавых лініях»[9] («On Physical Lines of Force»[10]), якая складаецца з чатырох частак і была апублікавана ў 1861—1862 гадах. Абагульняючы закон Ампера, Максвел ўводзіць ток зрушэння, імаверна, каб звязаць токі і зарады ўраўненнем непарыўнасці, якое ўжо было вядома для іншых фізічных велічынь[8]. Такім чынам, у гэтым артыкуле фактычна была завершана фармулёўка поўнай сістэмы ўраўненняў электрадынамікі. У артыкуле 1864 «Дынамічная тэорыя электрамагнітнага поля»[11] («A dynamical theory of the electromagnetic field»[12]) разгледжана сфармуляваная раней сістэма ўраўненняў з 20 скалярных ураўненняў для 20 скалярных невядомых. У гэтым артыкуле Максвел ўпершыню сфармуляваў паняцце электрамагнітнага поля як фізічнай рэальнасці, якая мае ўласную энергію і канечны час распаўсюджвання, які і вызначае з’яву запазнення ​​электрамагнітнага ўзаемадзеяння[8].

 
Пераменны паток магнітнага поля стварае электрычнае поле (закон Фарадэя)

Аказалася, што не толькі ток, але электрычнае поле, якое змяняецца з часам, (ток зрушэння) спараджае магнітнае поле. У сваю чаргу, згодна з законам Фарадэя, пераменнае магнітнае поле зноў спараджае электрычнае. У выніку, у пустой прасторы можа распаўсюджвацца электрамагнітная хваля. З ураўненняў Максвела вынікала, што яе хуткасць роўная хуткасці святла, таму Максвел зрабіў выснову аб электрамагнітнай прыродзе святла.

Частка фізікаў выступіла супраць тэорыі Максвела (асабліва шмат пярэчанняў выклікала канцэпцыя току зрушэння). Гельмгольц прапанаваў сваю тэорыю, кампрамісную ў адносінах да мадэлей Вебера і Максвела, і даручыў свайму вучню Генрыху Герцу правесці яе эксперыментальную праверку. Аднак вопыты Герца адназначна пацвердзілі слушнасць тэорыі Максвел

Максвел не ўжываў вектарных абазначэнняў і запісваў свае ўраўненні ў досыць грувасткім кампанентным выглядзе. У сваім трактаце [13] ён, акрамя таго, часткова выкарыстаў кватэрніённую фармулёўку. Сучасная форма ўраўненняў Максвела з’явілася каля 1884 пасля работ Хэвісайда, Герца і Гібса. Яны не толькі перапісалі сістэму Максвела ў вектарным выглядзе, але і сіметрызавалі яе, перафармуляваўшы ў тэрмінах поля і пазбавіўшыся ад электрычнага і магнітнага патэнцыялаў, істотных у тэорыі Максвела, бо лічылі, што гэтыя функцыі з’яўляюцца толькі непатрэбнымі дапаможнымі матэматычнымі абстракцыямі[14]. Цікава, што сучасная фізіка падтрымлівае Максвела, але не падзяляе негатыўнае стаўленне яго ранніх паслядоўнікаў да патэнцыялаў. Электрамагнітны патэнцыял выконвае важную ролю ў квантавай фізіцы і праяўляецца як фізічна вымяраемая велічыня ў некаторых эксперыментах, напрыклад, у эфекце Ааронава — Бома[15].

Сістэма ўраўнанняў у фармулёўцы Герца і Хэвісайда некаторы час называлася ўраўненнямі Герца — Хэвісайда[16]. Эйнштэйн у класічным артыкуле «Да электрадынамікі цел у руху» [17] назваў іх ураўненнямі Максвела — Герца. Часам у літаратуры сустракаецца таксама назва ўраўненні Максвела — Хэвісайда[18].

Ураўненні Максвела адыгралі важную ролю пры ўзнікненні спецыяльнай тэорыі адноснасці (СТА). Джозэф Лармор (1900)[19] і незалежна ад яго Хендрык Лорэнц (1904 год)[20] знайшлі пераўтварэнні каардынат, часу і электрамагнітных палёў, якія пакідаюць ўраўненні Максвелла інварыянтнымі пры пераходзе ад адной інерцыяльнай сістэмы адліку да іншай. Гэтыя пераўтварэнні адрозніваліся ад пераўтварэнняў Галілея класічнай механікі і, з падачы Анры Пуанкарэ[21], сталі называцца пераўтварэннямі Лорэнца. Яны сталі матэматычным падмуркам спецыяльнай тэорыі адноснасці.

Распаўсюджванне электрамагнітных хваль з хуткасцю святла першапачаткова тлумачылася як ўзбурэнне (хваляванне) некаторага асяроддзя, так званага эфіру[22]. Рабіліся шматлікія спробы выявіць рух Зямлі адносна эфіру, аднак яны нязменна давалі адмоўны вынік[заўв 1]. Таму Анры Пуанкарэ выказаў гіпотэзу аб прынцыповай немагчымасці выявіць падобны рух (прынцып адноснасці). Яму ж належыць пастулат аб незалежнасці хуткасці святла ад хуткасці яго крыніцы і вывад (разам з Лорэнцам), зыходзячы са сфармуляванага так прынцыпу адноснасці, дакладнага выгляду пераўтварэнняў Лорэнца (пры гэтым былі паказаны і групавыя ўласцівасці гэтых пераўтварэнняў). Гэтыя дзве гіпотэзы (пастулаты) ляглі і ў аснову артыкула Альберта Эйнштэйна (1905 год)[17]. З іх дапамогай ён таксама вывеў пераўтварэнні Лорэнца і зацвердзіў іх агульнафізічны сэнс, асабліва падкрэсліўшы магчымасць іх прымянення для пераходу з любой інерцыяльных сістэм адліку ў любую іншую інерцыяльную. Гэта праца фактычна адзначыла сабой пабудову спецыяльнай тэорыі адноснасці. У СТА пераўтварэнні Лорэнца адлюстроўваюць агульныя ўласцівасці прасторы і часу, а мадэль эфіру аказваецца непатрэбнай. Электрамагнітныя палі з’яўляюцца самастойнымі аб’ектамі, існуючымі нароўні з матэрыяльнымі часціцамі.

Класічная электрадынаміка, заснаваная на ўраўненнях Максвелла, ляжыць у аснове шматлікіх прыкладанняў электра- і радыётэхнікі, ЗВЧ і оптыкі. На сённяшні дзень не выяўлена ні аднаго эфекту, які патрабаваў бы перайначвання ўраўненняў. Яны аказваюцца дастасавальнымі і ў квантавай механіцы, калі разглядаецца рух, напрыклад, зараджаных часціц ў знешніх электрамагнітных палях. Таму ўраўненні Максвелла з’яўляюцца асновай мікраскапічнага апісання электрамагнітных уласцівасцей рэчыва.

Ураўненні Максвелла запатрабаваныя таксама ў астрафізіцы і касмалогіі, бо многія планеты і зоркі маюць магнітнае поле. Магнітнае поле вызначае, у прыватнасці, ўласцівасці такіх аб’ектаў, як пульсары і квазары.

На сучасным узроўні разумення ўсё фундаментальныя часціцы з’яўляюцца квантавымі ўзбуджэннямі («квантамі») розных палёў. Напрыклад, фатон — гэта квант электрамагнітнага поля, а электрон — квант спінарнага поля[23]. Таму палявы падыход, прапанаваны Фарадэем і істотна развіты Максвелам, з’яўляецца асновай сучаснай фізікі фундаментальных часціц, у тым ліку яе стандартнай мадэлі.

Гістарычна трохі раней ён адыграў важную ролю ў з’яўленні квантавай механікі ў фармулёўцы Шродзінгера і наогул адкрыцці квантавых ураўненняў, якія апісваюць рух часціц, у тым ліку і рэлятывісцкіх (ураўненне Клейна — Гордана, ураўненне Дзірака), хоць першапачаткова аналогія з ураўненнямі Максвела тут бачылася хутчэй толькі ў агульнай ідэі, тады як пасля аказалася, што яе можна разумець як больш канкрэтную і дэталёвую (як гэта апісана вышэй).

Таксама палявы падыход, які у цэлым узыходзіць да Фарадэя і Максвела, стаў цэнтральным ў тэорыі гравітацыі (у тым ліку ў АТА).

Запіс ураўненняў Максвела і сістэмы адзінак

правіць

Запіс большасці ўраўненняў у фізіцы не залежыць ад выбару сістэмы адзінак. Аднак у электрадынаміцы гэта не так. У залежнасці ад выбару сістэмы адзінак ва ўраўненнях Максвела ўзнікаюць розныя каэфіцыенты (канстанты). Міжнародная сістэма адзінак (СІ) з’яўляецца стандартам у тэхніцы і выкладанні, аднак спрэчкі сярод фізікаў аб яе перавагах і недахопах у параўнанні з сіметрычнай гаусавай сістэмай адзінак (СГС) не сціхаюць[24]. Перавага сістэмы СГС ў электрадынаміцы заключаецца ў тым, што ўсе палі ў ёй маюць адну размернасць, а ўраўненні, на думку многіх навукоўцаў, запісваюцца прасцей і натуральней[25]. Таму СГС працягвае прымяняцца ў навуковых публікацыях па электрадынаміцы і ў выкладанні тэарэтычнай фізікі, напрыклад, у курсе тэарэтычнай фізікі Ландау і Ліфшыца. Але для ўжывання на практыцы многія прынятыя ў СГС адзінкі вымярэння нязручныя, бо ці не маюць назвы, як безразмерныя, ці вызначаны неадназначна і адрозніваюцца ў розных пашырэннях сістэмы СГС. Сістэма ж СІ стандартызавана і лепш самаўзгоднена, на гэтай сістэме пабудавана ўся сучасная метралогія[26]. Акрамя таго, сістэма СІ звычайна выкарыстоўваецца ў курсах агульнай фізікі. У сувязі з гэтым усе суадносіны, калі яны па-рознаму запісваюцца ў сістэмах СІ і СГС, далей прыводзяцца ў двух варыянтах.

Часам (напрыклад, у «Фейнманаўскіх лекцыях па фізіцы», а таксама ў сучаснай квантавай тэорыі поля) ужываецца сістэма адзінак, у якой хуткасць святла, электрычная і магнітная пастаянная прымаюцца за адзінку ( ). У такой сістэме ўраўненні Максвела запісваюцца наогул без каэфіцыентаў, усе палі маюць аднолькавую размернасць, а ўсе патэнцыялы — сваю аднолькавую. Такая сістэма асабліва зручная ў каварыянтнай чатырохмернай фармулёўцы законаў электрадынамікі праз 4-патэнцыял і 4-тэнзар электрамагнітнага поля.

Дыферэнцыяльная форма

правіць

Ураўненні Максвела прадстаўляюць сабой у вектарным запісе сістэму з чатырох ураўненняў, якая зводзіцца ў кампанентным прадстаўленні да васьмі (два вектарныя ураўненні ўтрымліваюць па тры кампаненты кожнае, плюс два скалярныя[заўв 2]) лінейных дыферэнцыяльных ураўненняў ў частковых вытворных першага парадку для 12 кампанент чатырох вектарных функцый ( ):

Назва
СГС
СІ
Прыкладнае апісанне словамі
Закон Гауса
 
 
Электрычны зарад з’яўляецца крыніцай электрычнай індукцыі.
Закон Гауса для магнітнага поля
 
 
Не існуе магнітных зарадаў[заўв 3].
Закон індукцыі Фарадэя
 
 
Змяненне магнітнай індукцыі спараджае віхравое электрычнае поле[заўв 3].
Тэарэма аб цыркуляцыі магнітнага поля
 
 
Электрычны ток і змяненне электрычнай індукцыі спараджаюць віхравое магнітнае поле.

Тоўстым шрыфтам у далейшым абазначаюцца вектарныя велічыні, курсівам — скалярныя.

Уведзеныя абазначэнні:

  •   — шчыльнасць старонняга электрычнага зараду (у адзінках СІ — Кл/м³);
  •   — шчыльнасць электрычнага току (шчыльнасць току праводнасці) (у адзінках СІ — А/м²); у найпрасцейшым выпадку — калі ток спараджаецца адным тыпам носьбітаў зараду, яна выражаецца проста як  , дзе   — (сярэдняя) хуткасць руху гэтых носьбітаў у наваколлі дадзенага пункта,   — шчыльнасць зараду гэтага тыпу носьбітаў (яна ў агульным выпадку не супадае з  )[заўв 4]; у агульным выпадку гэта выраз трэба усярэдніць па розных тыпах носьбітаў;
  •   — хуткасць святла ў вакууме (299792458 м/с);
  •   — напружанасць электрычнага поля (у адзінках СІ — В/м);
  •   — напружанасць магнітнага поля (у адзінках СІ — А/м);
  •   — электрычная індукцыя (у адзінках СІ — Кл/м²);
  •   — магнітная індукцыя (у адзінках СІ — Тл = Вб/м² = кг•с−2•А−1);
  •   — дыферэнцыяльны аператар набла, які ў дэкартавых каардынатах (x, y, z) мае выгляд:
 

пры гэтым:

  •   азначае ротар вектара,
  •   азначае дывергенцыю вектара.

Прыведзеныя вышэй ураўненні Максвела не ўтвараюць яшчэ поўнай сістэмы ўраўненняў электрамагнітнага поля, бо яны не ўтрымліваюць уласцівасцей асяроддзя, у яком узбуджана электрамагнітнае поле. Суадносіны, якія звязваюць велічыні  ,  ,  ,   і   і ўлічваюць індывідуальныя ўласцівасці асяроддзя, называюцца матэрыяльнымі ўраўненнямі.

Інтэгральная форма

правіць

Пры дапамозе формул Астраградскага — Гауса і Стокса дыферэнцыяльным ураўненням Максвела можна надаць форму інтэгральных ураўненняў:

Назва
СГС
СІ
Прыкладнае апісанне словамі
Закон Гауса
 
 
Паток электрычнай індукцыі праз замкнёную паверхню   прапарцыянальны велічыні свабоднага зараду, які знаходзіцца ў акружаным паверхняю   аб’ёме  
Закон Гауса для магнітнага поля
 
 
Паток магнітнай індукцыі праз замкнёную паверхню роўны нулю (магнітныя зарады не існуюць).
Закон індукцыі Фарадэя
   
   
Змяненне патоку магнітнай індукцыі праз незамкнёную паверхню   узятае з адваротным знакам, прапарцыянальнае цыркуляцыі электрычнага поля на замкнёным контуры  , які з’яўляецца мяжой паверхні  .
Тэарэма аб цыркуляцыі магнітнага поля
   
   
Поўны электрычны ток свабодных зарадаў і змяненне патоку электрычнай індукцыі праз незамкнёную паверхню   узятыя ў суме, прапарцыянальныя цыркуляцыі магнітнага поля на замкнёным контуры  , які з’яўляецца мяжой паверхні  .
 
Паток электрычнага поля праз замкнёную паверхню

Уведзеныя абазначэнні:

  •   — двухмерная замкнёная ў выпадку тэарэмы Гауса паверхня, якая абмяжоўвае аб’ём  , і адкрытая паверхня ў выпадку законаў Фарадэя і Ампера — Максвелла (яе мяжой з’яўляецца замкнёны контур  ).
  •   — электрычны зарад, заключаны ў абмежаваным паверхняй   аб’ёме   (у адзінках СІ — Кл);
  •   — электрычны ток, які праходзіць праз паверхню   (у адзінках СІ — А).

Пры інтэграванні па замкнёнай паверхні вектар элемента плошчы   накіраваны з аб’ёму вонкі. Арыентацыя   пры інтэграванні па незамкнутай паверхні вызначаецца напрамкам правага вінта, які «ўкручваецца» пры павароце ў кірунку абыходу контурнага інтэграла па  .

Апісанне законаў Максвела словамі, напрыклад, закона Фарадэя, нясе адбітак традыцыі, бо спачатку пры кантралюемым змяненні магнітнага патоку рэгістравалася ўзнікненне электрычнага поля (дакладней электрарухальнай сілы). У агульным выпадку ва ўраўненнях Максвела (як у дыферэнцыяльнай, так і ў інтэгральнай форме) вектарныя функцыі   з’яўляюцца раўнапраўнымі невядомымі велічынямі, якія вызначаюцца ў выніку рашэння ўраўненняў.

Сіла Лорэнца

правіць

Пры рашэнні ўраўненняў Максвела размеркаванні зарадаў   і токаў   часта лічацца зададзенымі. З улікам межавых умоў і матэрыяльных ураўненняў гэта дазваляе вызначыць напружанасць электрычнага поля   і магнітную індукцыю  , якія, у сваю чаргу, вызначаюць сілу, якая дзейнічае на пробны зарад  , што рухаецца з хуткасцю  . Гэтая сіла называецца сілай Лорэнца:

СГС
СІ
 
 

Электрычны складнік сілы накіраваны па электрычнаму полю (калі  ), а магнітны — перпендыкулярны хуткасці зарада і магнітнай індукцыі. Упершыню выраз для сілы, якая дзейнічае на зарад у магнітным полі (электрычная кампанента была вядомая), атрымаў ў 1889 годзе Хэвісайд[27][28] за тры гады да Хендрыка Лорэнца, які вывеў выраз для гэтай сілы ў 1892 годзе.

У больш складаных сітуацыях у класічнай і квантавай фізіцы ў выпадку, калі пад дзеяннем электрамагнітных палёў свабодныя зарады перамяшчаюцца і змяняюць значэнні палёў, неабходна рашэнне самаўзгодненай сістэмы з ураўненняў Максвелла і ўраўненняў руху, якія ўключаюць сілы Лорэнца. Атрыманне дакладнага аналітычнага рашэння такой поўнай сістэмы звычайна спалучана з вялікімі цяжкасцямі.

Размерныя канстанты ва ўраўненнях Максвела

правіць

У гаусавай сістэме адзінак СГС усе палі маюць аднолькавую размернасць, і ва ўраўненнях Максвела фігуруе адзіная фундаментальная канстанта  , якая мае размернасць хуткасці і цяпер называецца хуткасцю святла (іменна роўнасць гэтай канстанты хуткасці распаўсюджвання святла дала Максвелу падставы для гіпотэзы аб электрамагнітнай прыродзе святла[29]).

У сістэме адзінак СІ, каб звязаць электрычную індукцыю і напружанасць электрычнага поля ў вакууме, уводзіцца электрычная пастаянная  :

 

Магнітная пастаянная   з’яўляецца такім жа каэфіцыентам прапарцыянальнасці для магнітнага поля ў вакууме:

  Назвы электрычная пастаянная і магнітная пастаянная зараз стандартызаваныя[30]. Раней для гэтых велічынь таксама выкарыстоўваліся, адпаведна, назвы дыэлектрычная і магнітная пранікальнасці вакууму.

Хуткасць электрамагнітнага выпраменьвання ў вакууме (хуткасць святла) у СІ ўзнікае пры вывадзе хвалевага ўраўнення:

 

У сістэме адзінак СІ, у якасці дакладных размерных канстант вызначаны хуткасць святла ў вакууме   і магнітная пастаянная  . Праз іх выражаецца электрычная пастаянная  .

Прынятыя значэнні[31] хуткасці святла, электрычнай і магнітнай пастаянных прыведзены ў табліцы:

Сімвал
Назва
Лікавае значэнне
Адзінкі вымярэння СІ
 
Пастаянная хуткасці святла
  (дакладна)
м/с
 
Магнітная пастаянная
 
Гн
 
Электрычная пастаянная
 
Ф

Часам ўводзіцца велічыня, так званае «хвалевае супраціўленне», або «імпеданс» вакууму:

  Ом.

Прыбліжанае значэнне для   атрымліваецца, калі для хуткасці святла прыняць значэнне   м/c. У сістэме СГС  . Гэта велічыня мае сэнс адносіны амплітуд напружанасцей электрычнага і магнітнага палёў плоскай электрамагнітнай хвалі ў вакууме.

Ураўненні Максвела ў асяроддзі

правіць

Каб атрымаць поўную сістэму ўраўненняў электрадынамікі, да сістэмы ўраўненняў Максвела неабходна дадаць матэрыяльныя ўраўненні, якія звязваюць велічыні  ,  ,  ,  ,  , у якіх улічаныя індывідуальныя ўласцівасці асяроддзя. Спосаб атрымання матэрыяльных ураўненняў даюць малекулярныя тэорыі палярызацыі, намагнічанасць і электраправоднасці асяроддзя, якія выкарыстоўваюць ідэалізаваныя мадэлі асяроддзя. Прымяняючы да іх ураўненні класічнай або квантавай механікі, а таксама метады статыстычнай фізікі, можна ўстанавіць сувязь паміж вектарамі  ,  ,   з аднаго боку і  ,   з іншага боку.

Звязаныя зарады і токі

правіць
 
Злева: Сукупнасць мікраскапічных дыполяў у асяроддзі ўтварае адзін макраскапічны дыпольны момант і эквівалентная двум зараджаным з процілеглым знакам пласцінам на мяжы. Пры гэтым унутры асяроддзя ўсё зарады скампенсаваныя; Справа: Сукупнасць мікраскапічных цыркулярных токаў у асяроддзі эквівалентная макраскапічнаму току, які цыркулюе ўздоўж мяжы. Пры гэтым унутры асяроддзя ўсё токі скампенсаваныя.

Пры прыкладанні электрычнага поля да дыэлектрычнага матэрыялу кожная з яго малекул ператвараецца ў мікраскапічны дыполь. Пры гэтым дадатныя ядры атамаў трохі ссоўваюцца ў кірунку поля, а электронныя абалонкі ў процілеглым кірунку. Акрамя гэтага, малекулы некаторых рэчываў першапачаткова маюць дыпольны момант. Дыпольныя малекулы імкнуцца арыентавацца ў кірунку поля. Гэты эфект завецца палярызацыяй дыэлектрыкаў. Такое зрушэнне звязаных зарадаў малекул ў аб’ёме эквівалентнае з’яўленню некаторага размеркавання зарадаў на паверхні, хоць усе малекулы, уцягнутыя ў працэс палярызацыі застаюцца нейтральнымі (гл. малюнак).

Падобным чынам адбываецца і магнітная палярызацыя (намагнічванне) у матэрыялах, у якіх атамы і малекулы маюць магнітныя моманты, звязаныя са спінам і арбітальным момантам ядраў і электронаў. Вуглавыя моманты атамаў можна прадставіць у выглядзе цыркулярных токаў. На мяжы матэрыялу сукупнасць такіх мікраскапічных токаў эквівалентная макраскапічным токам, якія цыркулююць ўздоўж паверхні, нягледзячы на тое, што рух зарадаў ў асобных магнітных дыполях адбываецца толькі ў мікрамаштабе (звязаныя токі).

Разгледжаныя мадэлі паказваюць, што хоць вонкавае электрамагнітнае поле дзейнічае на асобныя атамы і малекулы, яго паводзіны ў многіх выпадках можна разглядаць спрошчана ў макраскапічным маштабе, ігнаруючы дэталі мікраскапічнай карціны.

У асяроддзі вонкавыя электрычныя і магнітныя палі выклікаюць палярызацыю і намагнічванне рэчыва, якія макраскапічна апісваюцца адпаведна вектарам палярызацыі   і вектарам намагнічанасці   рэчыва, а на мікраўзроўні абумоўлены з’яўленнем звязаных зарадаў   і токаў  . У выніку поле ў асяроддзі аказваецца сумай знешніх палёў і палёў, выкліканых звязанымі зарадамі і токамі.

СГС
СІ
 
 
 
 

Палярызацыя   і намагнічанасць рэчыва   звязаны з вектарамі напружанасці і індукцыі электрычнага і магнітнага поля наступнымі суадносінамі:

СГС
СІ
 
 
 
 

Таму, выражаючы вектары   і   праз  ,  ,   і  , можна атрымаць матэматычна эквівалентную сістэму ўраўненняў Максвела:

СГС
СІ
 
 
 
 
 
 
 
 

Індэксам   тут пазначаны свабодныя зарады і токі. Ураўненні Максвела ў такой форме з’яўляюцца фундаментальнымі, у тым сэнсе, што яны не залежаць ад мадэлі электрамагнітнай будовы рэчыва. Падзел зарадаў і токаў на свабодныя і звязаныя дазваляе «схаваць» у  ,  , а затым у   і, такім чынам, у   складаны мікраскапічны характар ​​электрамагнітнага поля ў асяроддзі.

Матэрыяльныя ўраўненні

правіць

Матэрыяльныя ўраўненні ўстанаўліваюць сувязь паміж   і  . Пры гэтым улічваюцца індывідуальныя ўласцівасці асяроддзя. На практыцы ў матэрыяльных ураўненнях звычайна выкарыстоўваюцца эксперыментальна вызначаныя каэфіцыенты (залежныя ў агульным выпадку ад частаты электрамагнітнага поля), якія сабраны ў розных даведніках фізічных велічынь[32].

СГС
СІ
 
 
 
 

дзе ўведзеныя безразмерныя канстанты:   — дыэлектрычная ўспрымальнасць і   — магнітная ўспрымальнасць рэчыва (у сістэме адзінак СІ гэтыя канстанты ў   разоў большыя, чым у гаусавай сістэме СГС). Адпаведна, матэрыяльныя ўраўненні для электрычнай і магнітнай індукцыі запісваюцца ў наступным выглядзе:

СГС
СІ
 
 
 
 

дзе   — адносная дыэлектрычная пранікальнасць,   — адносная магнітная пранікальнасць. Размерныя велічыні   (у адзінках СІ — Ф/м) і   (у адзінках СІ — Гн/м), якія ўзнікаюць у сістэме СІ, называюцца абсалютная дыэлектрычная пранікальнасць і абсалютная магнітная пранікальнасць адпаведна.

 

дзе   — удзельная праводнасць асяроддзя (у адзінках СІ — Ом−1•м−1).

  • У анізатропным асяроддзі  ,   і   з’яўляюцца тэнзарамі  ,   і  . У сістэме каардынат галоўных восей іх можна апісаць дыяганальнымі матрыцамі. У гэтым выпадку, сувязь паміж напружанасцямі палёў і індукцыямі мае розныя каэфіцыенты па кожнай каардынаце. Напрыклад, у сістэме СІ:
 
  • Хоць для шырокага класа рэчываў лінейнае прыбліжэнне для слабых палёў выконваецца з высокай дакладнасцю, у агульным выпадку залежнасць паміж   і   можа быць нелінейнай. У гэтым выпадку пранікальнасці асяроддзя не з’яўляюцца пастаяннымі, а залежаць ад велічыні поля ў дадзенай кропцы. Акрамя таго, больш складаная сувязь паміж   і   назіраецца ў асяроддзях з прасторавай або часавай дысперсіямі. У выпадку прасторавай дысперсіі токі і зарады ў дадзенай кропцы прасторы залежаць ад велічыні поля не толькі ў той жа кропцы, але і ў суседніх кропках. У выпадку часавай дысперсіі палярызацыя і намагнічанасць асяроддзя не вызначаюцца толькі велічынёй поля ў дадзены момант часу, а залежаць таксама ад велічыні палёў у папярэднія моманты часу. У самым агульным выпадку нелінейных і неаднародных асяроддзяў з дысперсіяй, матэрыяльныя ўраўненні ў сістэме СІ прымаюць інтэгральны выгляд:
 
 

.

Аналагічныя ўраўненні атрымліваюцца ў гаусавай сістэме СГС (калі фармальна прыняць  ).

Ураўненні ў ізатропных і аднародных асяроддзях без дысперсіі

правіць

У ізатропных і аднародных асяроддзях без дысперсіі ўраўненні Максвела прымаюць наступны выгляд:

СГС
СІ
 
 
 
 
 
 
 
 

У аптычным дыяпазоне частот замест дыэлектрычнай пранікальнасці   выкарыстоўваецца паказчык праламлення  , які паказвае адрозненне хуткасці распаўсюджвання монахраматычнай светлавой хвалі ў асяроддзі ад хуткасці святла ў вакууме. Пры гэтым ў аптычным дыяпазоне дыэлектрычная пранікальнасць звычайна прыкметна меншая чым на нізкіх частотах, а магнітная пранікальнасць большасці аптычных асяроддзяў практычна роўная адзінцы. Паказчык праламлення большасці празрыстых матэрыялаў складае ад 1 да 2, дасягаючы 5 у некаторых паўправаднікоў[33]. У вакууме і дыэлектрычная, і магнітная пранікальнасці роўныя адзінцы:  .

Ураўненні Максвелла ў лінейным асяроддзі з’яўляюцца лінейнымі адносна палёў   і свабодных зарадаў і токаў  , таму справядлівы прынцып суперпазіцыі:

Калі размеркавані зарадаў і токаў  ствараюць электрамагнітнае поле з кампанентамі , а іншыя размеркаванні   ствараюць, адпаведна, поле  , то сумарнае поле, якое ствараецца крыніцамі  , будзе роўнае  .

Пры распаўсюджванні электрамагнітных палёў у лінейным асяроддзі пры адсутнасці зарадаў і токаў сума любых асобных рашэнняў ураўненняў Максвела таксама будзе іх рашэннем.

Межавыя ўмовы

правіць

У многіх выпадках неаднароднае асяроддзе можна прадставіць у выглядзе сукупнасці кавалкава-непарыўных аднародных абласцей, раздзеленых бесканечна тонкімі межамі. Пры гэтым можна рашаць ураўненні Максвела ў кожнай вобласці асобна, а пасля «сшыць» атрыманыя рашэнні на межах. У прыватнасці, пры разглядзе рашэння ў канечным аб’ёме неабходна ўлічваць ўмовы на межах аб’ёму з навакольнай бясконцай прасторай. Межавыя ўмовы атрымліваюцца з ураўненняў Максвела гранічным пераходам. Для гэтага прасцей за ўсё скарыстаць ураўненні Максвелла ў інтэгральнай форме.

Выбіраючы ў другой пары ўраўненняў контур інтэгравання ў выглядзе прамавугольнай рамкі бясконца малой вышыні так, каб рамка перасякала мяжу падзелу двух асяроддзяў, можна атрымаць наступную сувязь паміж кампанентамі поля ў дзвюх абласцях, якія прымыкаюць да мяжы[34]:

СГС
СІ
 ,
 ,
 ,
 ,

дзе   — адзінкавы вектар нармалі да паверхні, які накіраваны з асяроддзя 1 у асяроддзе 2 і мае размернасць, адваротную даўжыні,   — шчыльнасць паверхневых свабодных токаў уздоўж мяжы (гэта значыць не уключаючы звязаных токаў намагнічвання, якія складваюцца на мяжы асяроддзя з мікраскапічных малекулярных і іншых падобных токаў). Першую межавую ўмову можна вытлумачыць як непарыўнасць на мяжы абласцей тангенцыяльных кампанент напружанасцей электрычнага поля (з другой вынікае, што тангенцыяльныя кампаненты напружанасці магнітнага поля непарыўныя толькі пры адсутнасці паверхневых токаў на мяжы).

Аналагічным чынам, выбіраючы вобласць інтэгравання ў першай пары інтэгральных ураўненняў у выглядзе цыліндра бясконца малой вышыні, які перасякае мяжу падзелу так, што яго ўтваральныя перпендыкулярныя мяжы падзелу, можна атрымаць:

СГС
СІ
 ,
 ,
 ,
 ,

дзе   — паверхневая шчыльнасць свабодных зарадаў (гэта значыць, што яна не ўключае ў сябе звязаных зарадаў, якія ўзнікаюць на мяжы асяроддзя з-за дыэлектрычнай палярызацыі самога асяроддзя).

Гэтыя межавыя ўмовы паказваюць непарыўнасць нармальнай кампаненты вектару магнітнай індукцыі (нармальная кампанента электрычнай індукцыі непарыўная толькі пры адсутнасці на мяжы паверхневых зарадаў).

З ураўнення непарыўнасці можна атрымаць межавую ўмову для токаў:

 ,

Важным асобным выпадкам з’яўляецца мяжа падзелу дыэлектрыка і ідэальнага правадніка. А раз ідэальны праваднік мае бесканечную праводнасць, электрычнае поле ўнутры яго роўнае нулю (інакш яно спараджала б бесканечную шчыльнасць току). Тады ў агульным выпадку зменных палёў з ураўненняў Максвела вынікае, што і магнітнае поле ў правадніку роўнае нулю. У выніку тангенцыяльная кампанента электрычнага і нармальная магнітнага поля на мяжы з ідэальным правадніком роўныя нулю:

СГС
СІ
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,

Законы захавання

правіць

Ураўненні Максвела ўтрымліваюць у сабе законы захавання зараду і энергіі электрамагнітнага поля.

Ураўненне непарыўнасці

правіць

Крыніцы палёў ( ) не могуць быць зададзены адвольным чынам. Прымяняючы аперацыю дывергенцыі да чацвёртага ўраўнення (закон Ампера-Максвела) і выкарыстоўваючы першае ўраўненне (закон Гаўса), можна атрымаць ураўненне непарыўнасці для зарадаў і токаў:

 

Гэта ўраўненне пры дапамозе інтэгральнай тэарэмы Астраградскага — Гауса можна запісаць у наступным выглядзе:

 

У левай частцы ўраўнення знаходзіцца поўны ток, што працякае праз замкнёную паверхню  . У правай частцы — змяненне з часам зараду ўнутры аб’ёму  . Такім чынам, змяненне зараду ўнутры аб’ёму магчыма толькі пры яго прытоку або адтоку праз паверхню  , якая абмяжоўвае аб’ём.

Ураўненне непарыўнасці, раўназначнае закону захавання зараду, выходзіць далёка за межы класічнай электрадынамікі, застаючыся справядлівым і ў квантавай тэорыі. Таму гэта ўраўненне само па сабе можа быць паложана ў аснову электрамагнітнай тэорыі. Тады, напрыклад, ток зрушэння (вытворная па часе электрычнага поля) павінен абавязкова прысутнічаць у законе Ампера.

З ураўненняў Максвелла для ротараў і ўраўнення непарыўнасці з дакладнасцю да адвольных функцый, незалежных ад часу, вынікаюць законы Гауса для электрычнага і магнітнага палёў.

Закон захавання энергіі

правіць

Калі дамножыць трэцяе ўраўненне Максвела ў дыферэнцыяльнай форме (закон Фарадэя) скалярна на  , а чацвёртае (закон Ампера — Максвела) — на   і скласці вынікі, можна атрымаць тэарэму Пойнтынга:

 

дзе

СГС СІ
 
 
 
 
 
 

Вектар   называецца вектарам Пойнтынга (вектарам шчыльнасці патоку электрамагнітнай энергіі) і вызначае колькасць электрамагнітнай энергіі, якая пераносіцца праз адзінку плошчы ў адзінку часу. Інтэграл вектара Пойнтынга па сячэнні хвалі, якая распаўсюджваецца, вызначае яе моц. Важна адзначыць, што, як упершыню паказаў Хэвісайд, фізічны сэнс патоку энергіі мае толькі бязвіхравая частка вектара Пойнтынга. Віхравая частка, дывергенцыя якой роўная нулю, не звязана з пераносам энергіі. Заўважым, што Хэвісайд атрымаў выраз для закона захавання незалежна ад Пойнтынга. У рускамоўнай літаратуры вектар Пойнтынга часта называецца таксама «вектарам Умава — Пойнтынга».

Велічыні   і   вызначаюць аб’ёмныя шчыльнасці энергіі, адпаведна, электрычнага і магнітнага палёў. Пры адсутнасці токаў і звязаных з імі страт тэарэма Пойнтынга з’яўляецца ўраўненнем непарыўнасці для энергіі электрамагнітнага поля. Праінтеграваўшы яго ў гэтым выпадку па некаторым замкнёным аб’ёме і скарыстаўшы тэарэму Астраградскага — Гауса, можна атрымаць закон захавання энергіі для электрамагнітнага поля:

 

Гэта ўраўненне паказвае, што пры адсутнасці ўнутраных страт змяненне энергіі электрамагнітнага поля ў аб’ёме адбываецца толькі за кошт магутнасці электрамагнітнага выпраменьвання, што пераносіцца праз мяжу гэтага аб’ёму.

Вектар Пойнтынга звязаны з імпульсам электрамагнітнага поля[35]:

 

дзе інтэграванне праводзіцца па ўсёй прасторы. Электрамагнітная хваля, паглынаючыся або адлюстроўваючыся ад некаторай паверхні, перадае ёй частку свайго імпульсу, што праяўляецца ў форме светлавога ціску. Эксперыментальна гэты эфект ўпершыню назіраўся П. Н. Лебедзевым ў 1899 годзе.

Патэнцыялы

правіць

Скалярныя і вектарныя патэнцыялы

правіць

Закон Фарадэя і закон Гауса для магнітнай індукцыі выконваюцца тоесна, калі электрычнае і магнітнае палі выразіць праз скалярны   і вектарны   патэнцыялы[36]:

СГС
СІ
 
 
 
 

Пры дадзеных электрычным   і магнітным   палях, скалярны і вектарны патэнцыялы вызначаны неадназначна. Калі   — адвольная функцыя каардынат і часу, то наступнае пераўтварэнне не зменіць значэнне палёў:

СГС
СІ
 
 
 
 

Падобныя пераўтварэнні іграюць важную ролю ў квантавай электрадынаміцы і ляжаць у аснове лакальнай калібравальнай сіметрыі электрамагнітнага ўзаемадзеяння. Лакальная калібравальная сіметрыя ўводзіць залежнасць ад каардынат і часу ў фазу глабальнай калібравальнай сіметрыі, якая, у сілу тэарэмы Нётэр, прыводзіць да закона захавання зараду.

Неадназначнасць вызначэння патэнцыялаў аказваецца зручнай для накладання на іх дадатковых умоў, так званай каліброўкі. Дзякуючы гэтаму, ўраўненні электрадынамікі прымаюць прасцейшы выгляд. Разгледзім, напрыклад, ураўненні Максвелла ў аднародных і ізатропных асяроддзях з дыэлектрычнай ( ) і магнітнай ( ) пранікальнасцямі. Для дадзеных   і   заўсёды можна падабраць такую ​​функцыю  , каб выконвалася калібравальная ўмова Лорэнца[37]:

СГС
СІ
 
 

У гэтым выпадку тыя ўраўненні Максвела, што засталіся, ў аднародных і ізатропных асяроддзях можна запісаць у наступным выглядзе:

СГС
СІ
 
 
 
 

дзе   — аператар Д’Аламбера, які і ў сістэме СГС, і ў сістэме СІ мае выгляд:

 

Такім чынам, 8 ураўненняў Максвела для кампанент электрамагнітнага поля (2 вектарныя і 2 скалярныя) пры дапамозе патэнцыялаў можна звесці да 4 ураўненняў (скалярнага для   і вектарнага для  ). Рашэнні гэтых ураўненняў для кропкавага зараду, які рухаецца адвольным чынам, называюцца патэнцыяламі Ліенара — Віхерта[38].

Можна ўвесці і іншыя каліброўкі. Так, для рашэння шэрагу задач зручнай аказваецца кулонаўская каліброўка:

 

У гэтым выпадку:

СГС
СІ
 
 
 
 

,

дзе   — саленаідальная частка току ( ).

Першае ўраўненне апісвае імгненнае (без запазнення) дзеянне кулонаўскай сілы, бо кулонаўская каліброўка неінварыянтная адносна пераўтварэнняў Лорэнца. Пры гэтым энергію кулонаўскага ўзаемадзеяння можна аддзяліць ад астатніх узаемадзеянняў, што спрашчае квантаванне поля ў гамільтанавым фармалізме[39].

Вектарны патэнцыял іграе вялікую ролю ў электрадынаміцы і ў квантавай тэорыі поля, аднак для даследавання працэсаў распаўсюджвання электрамагнітных хваль пры адсутнасці токаў і зарадаў яго ўвядзенне часта не прыводзіць да спрашчэння сістэмы, а зводзіцца да простай замены вектараў электрычнага і магнітнага поля на іншы аналагічны вектар, які апісваецца тымі ж ураўненнямі. Так, для гарманічных палёў вектарны патэнцыял будзе проста прапарцыянальны электрычнаму полю (скалярны патэнцыял пры гэтым можна прыняць роўным нулю).

Вектары Герца

правіць
  • У 1887 годзе Генрых Герц прапанаваў замест непасрэднага рашэння ўраўненняў Максвела для двух вектарных функцый электрычнага і магнітнага палёў або скалярнага і вектарнага патэнцыялаў перайсці да новай адзінай вектарнай функцыі, якая цяпер носіць назву электрычнага вектара Герца   і дазваляе ў некаторых выпадках спрасціць рашэнне электрадынамічных задач, зводзячы іх да рашэння скалярнага хвалевага ўраўнення.
СГС
СІ
 
 
 
 
 
 
 
 

Заўважым, што скалярны   і вектарны   патэнцыялы, выражаныя праз вектар Герца, аўтаматычна задавальняюць калібравальнай умове Лорэнца. Вектар Герца ўлічвае ўсе палі, звязаныя са свабоднымі зарадамі і іх токамі.

Падстаўляючы выразы для палёў праз электрычны вектар у два апошнія ўраўненні Максвела, можна атрымаць[40][41]:

СГС
СІ
 
 
 
 

Тут уведзены вектар палярызацыі свабодных зарадаў і токаў:

 

(пры гэтым ураўненне непарыўнасці для зараду выконваецца аўтаматычна).

Такім чынам, электрычны вектар Герца вызначаецца хвалевымі ўраўненнямі, у правай частцы якіх стаіць палярызавальнасць, абумоўленая свабоднымі, альбо свабоднымі і звязанымі зарадамі, г. зн. электрычнымі дыпольнымі момантамі.

  • У 1901 годзе парны электрычнаму вектару Герца магнітны вектар, які таксама традыцыйна называюць іменем Герца, увёў італьянскі фізік Аўгуста Рыгі[42].
СГС
СІ
 
 
 
 
 
 
 
 

А раз палі, якія апісваюцца магнітным вектарам Герца, не залежаць ад свабодных зарадаў і токаў, а магнітныя манаполі не выяўлены, то патэнцыялы задавальняюць каліброўцы Лорэнца ў выраджаным выглядзе — так званай кулонаўскай каліброўцы ( ,  ).

Аналагічным чынам можна атрымаць ураўненні для магнітнага патэнцыялу Герца, падстаўляючы выражаныя праз яго палі ў трэцяе і чацвёртае ўраўненні Максвела без току:

СГС
СІ
 
 
 
 

Дзеянне вонкавых магнітных палёў, звязаных са знешнімі крыніцамі, можна ўлічыць, па аналогіі з электрычным вектарам Герца, увядзеннем у правыя часткі дадатковай магнітнай палярызацыі  .

Такім чынам, вылучаецца два тыпы электрамагнітных палёў, якія выражаюцца праз электрычны і магнітны патэнцыялы Герца, а адвольнае поле можна прадставіць у выглядзе сумы такіх палёў. Палі, якія выражаюцца праз электрычны вектар Герца, носяць назву палёў электрычнага тыпу або папярочна-магнітных (TM) палёў, бо магнітнае поле для іх артаганальнае кірунку вектара Герца. Адпаведна, палі, якія выражаюцца праз магнітны вектар Герца, называюць палямі магнітнага тыпу або папярочна-электрычнымі палямі (TE), электрычнае поле ў якіх артаганальнае спараджаючаму вектару Герца. Палі TM можна прадставіць як палі, якія спараджаюцца размеркаванымі ў прасторы электрычнымі дыполямі, а палі TE, адпаведна, магнітнымі. Вектарныя патэнцыялы Герца, у сваю чаргу, у многіх выпадках можна выразіць праз скалярныя патэнцыялы.

Патэнцыялы Дэбая

правіць

У электрадынаміцы шырока выкарыстоўваюцца скалярныя патэнцыялы, прапанаваныя Дэбаем[43].

Хвалевае ўраўненне ўяўляе сабой сістэму трох звязаных скалярных ураўненняў, якія распадаюцца на тры скалярных ураўненні Гельмгольца толькі ў дэкартавай сістэме каардынат. Дзеля зручнасці пошуку рашэнняў, адпаведных межавым ўмовам, пажадана выбіраць каардынатныя сістэмы, каардынатныя паверхні якіх блізкія або супадаюць з паверхнямі меж. Адзін з падыходаў да рашэння вектарнага ўраўнення Гельмгольца заключаецца ва ўвядзенні скалярных функцый  , якія задавальняюць скалярнае хвалевае ўраўненне Гельмгольца, і праз якія затым можна выразіць вектарныя палі[44]:

 
 
 
 

Тут   — некаторая вектарная функцыя каардынат. Вектар  , апісвае патэнцыяльную частку поля і яго можна прыняць роўным нулю пры адсутнасці свабодных зарадаў.

Калі для некаторай артаганальнай каардынатнай сістэмы існуе функцыя  , прапарцыянальная каардынатнаму вектару, то адвольнае вектарнае поле, якое адпавядае вектарнаму ўраўненню Гельмгольца ў гэтай сістэме, можна прадставіць у выглядзе сумы вектарных функцый, прапарцыянальных вектарам   і  . Як вынікае з ураўненняў Максвела, электрычнаму полю, прапарцыянальнаму  , адпавядае магнітнае поле тыпу   і наадварот. Пры гэтым вектарныя патэнцыялы   адпавядаюць вектарам Герца. У гэтым выпадку поле, прапарцыянальнае  , нармальнае вектару  , таму яго кампаненты з’яўляюцца тангенцыяльнымі да адпаведнай   каардынатнай паверхні. Калі межы ў задачы, што рашаецца, супадаюць з адной з такіх каардынатных паверхняў, то задавальненне межавых ўмоў істотна спрашчаецца.

Такое прадстаўленне магчыма толькі для абмежавага мноства артаганальных каардынатных сістэм[45]. У дэкартавай сістэме каардынат у якасці вектара   можа выступаць любы каардынатны вектар. Адпаведныя рашэнні ўяўляюць сабой плоскія хвалі. Для цыліндрычнай сістэмы каардынат  , для сферычнай  . Акрамя таго, такое прадстаўленне магчыма ў канічнай, а таксама адносна восі   ў парабалічнай і эліптычнай цыліндрычных сістэмах каардынат.

Вектары Рымана — Зільберштэйна

правіць

Калі ўвесці камплексны вектар Рымана — Зільберштэйна   і камплексна спалучаны яму вектар  [46][47][48]:

СГС
СІ
 
 

то ўраўненні Максвелла зводзяцца да двух:

СГС
СІ
 
 
 
 

Пры адсутнасці іншых зарадаў і токаў застаецца толькі другое ўраўненне (першае з-за роўнасці дывергенцыі ротара нулю ў гэтым выпадку задавальняецца аўтаматычна з дакладнасцю да незалежнай ад часу кампаненты):

 

У адрозненне ад хвалевага ўраўнення, якое атрымліваецца ў гэтым выпадку для вектараў поля або патэнцыялу, апошняе вектарнае дыферэнцыяльнае ўраўненне мае першы, а не другі парадак і таму ў шэрагу выпадкаў можа быць прасцейшым для рашэння.

Для гарманічнага поля з залежнасцю   вектар   з’яўляецца уласным вектарам аператара ротара:

 

Пры выбранай нарміроўцы   мае сэнс камплекснай амплітуды электрамагнітнага поля, а яго квадрат модуля

 

мае сэнс шчыльнасці энергіі поля.

Вектар Пойнтынга:

 

Вектары   і   можна інтэрпрэтаваць як хвалевыя функцыі цыркулярна палярызаваных фатонаў[47].

Каварыянтная фармулёўка

правіць

З сучаснага пункту гледжання, чатырохмерная каварыянтная фармулёўка электрадынамікі, і ў прыватнасці — запіс ураўненняў Максвела ў такім выглядзе, з’яўляецца фізічна найбольш фундаментальнай.

Практычна яна прыводзіць, акрамя відавочнай каварыянтнасці, да значна большай кампактнасці ўраўненняў, а значыць пэўнай прыгажосці і ў шэрагу выпадкаў зручнасці, і больш арганічна і прама ўключае ў сябе адзінства электрамагнітнага поля.

Пад каварыянтнай фармулёўкай разумеюць два прама і непасрэдна звязаныя варыянты, якія, аднак, адрозніваюцца: Лорэнц-каварыянтная фармулёўка ў плоскай прасторы-часе Мінкоўскага і агульнакаварыянтная фармулёўка для агульнага выпадку скрыўлення прасторы-часу (якая звычайна разглядаецца ў кантэксце агульнай тэорыі адноснасці). Другі варыянт адрозніваецца ад першага тым, што метрыка прасторы-часу ў ім не сталая (што можа азначаць як прысутнасць гравітацыі, так і проста выкарыстанне шырэйшага класа каардынат, напрыклад, адпаведных неінерцыяльным сістэмам адліку), і шмат у чым зводзіцца да замены звычайных вытворных па (чатырохмерных) каардынатах на каварыянтныя вытворныя (у значнай частцы выпадкаў гэта зводзіцца да механічнай замены першых на другія). Акрамя іншага, другі варыянт дазваляе даследаваць узаемадзеянне электрамагнітнага поля з гравітацыяй.

  • Ніжэй спачатку разгледжаны (як больш просты) першы варыянт — варыянт лорэнц-каварыянтнай фармулёўкі ў плоскай прасторы-часе.

Чатырохмерныя вектары

правіць

Пры каварыянтным запісе ўраўненняў электрадынамікі ажыццяўляецца пераход ад трохмерных вектараў і скаляраў да чатырохмерных вектараў (4-вектары). Незалежна ад сістэмы адзінак, чатырохмерныя каардынаты (4-вектар каардынат, у кампаненты якога ўваходзяць час і трохмерныя прасторавыя каардынаты), вытворная па гэтых каардынатах (4-вытворная) і шчыльнасць току вызначаюцца наступным чынам[заўв 5]:

 
 
 

Індэкс 4-вектара прымае значэнні  . У кампанентным запісе вектара спачатку ідзе нулявая кампанента, затым — прасторавыя. Напрыклад, час роўны  , а шчыльнасць зараду  . У выніку гэтых азначэнняў, закон захавання зараду ў каварыянтнай форме прымае наступны выгляд:

 

Тут выкарыстоўваецца наступнае правіла (правіла Эйнштэйна): калі індэкс паўтараецца, то ў формуле маецца на ўвазе сумаванне ад 0 да 3.

Увядзем 4-вектар патэнцыялу, які мае ў сістэмах СГС і СІ наступныя кампаненты:

СГС
СІ
 
 
 
 

Пры каварыянтным запісе мае значэнне, дзе стаіць індэкс у 4-вектара. Калі індэкс знаходзіцца ўнізе, то такі вектар называецца каварыянтным вектарам (або кавектарам), і яго прасторавыя кампаненты маюць адваротны знак у параўнанні з кампанентамі 4-вектара. Узняцце і апусканне індэксаў праводзіцца пры дапамозе метрычнага тэнзара  , які ў чатырохмернай прасторы Мінкоўскага мае дыяганальны выгляд з сігнатурай: .

З дапамогай такога вызначэння 4-вектара патэнцыялу, калібравальную ўмову Лорэнца ў каварыянтнай форме можна запісаць наступным чынам:

 

Калі гэта ўмова выконваецца, то ўраўненні Максвела для патэнцыялаў у вакууме пры наяўнасці зарадаў і токаў прымаюць выгляд:

СГС
СІ
 
 ,

дзе   — аператар Даламбера з адваротным знакам:

 

Нулявая кампанента ўраўненняў Максвела для 4-вектара патэнцыялу адпавядае ўраўненню для  , а прасторавая — для  .

Тэнзар электрамагнітнага поля

правіць

Вызначым каварыянтны тэнзар электрамагнітнага поля пры дапамозе вытворнай ад 4-вектара патэнцыялу[49][50]:

 

Яўна гэты антысіметрычны тэнзар ( ) можна прадставіць у наступным выглядзе:

СГС
СІ
 
 

Часавыя кампаненты тэнзара складаюцца з кампанент напружанасці электрычнага поля, а прасторавыя — магнітнага, што можна запісаць наступным чынам:  . У тэнзары электрамагнітнага поля з верхнімі індэксамі змяняецца знак у нулявых кампанент (гэта значыць перад кампанентамі электрычнага поля):  .

Выкарыстоўваючы азначэнне тэнзара электрамагнітнага поля, нескладана праверыць выкананне наступнай тоеснасці:

 

Яго можна перапісаць ў кампактнейшым выглядзе, увёўшы дуальны тэнзар электрамагнітнага поля:

 

дзе   — антысіметрычны сімвал Леві-Чывіты ( ). Гэта ўраўненне з’яўляецца каварыянтным запісам закона Гауса для магнітнага поля і закона электрамагнітнай індукцыі Фарадэя. Кампаненты дуальнага тэнзара   атрымліваюцца з тэнзара  , у выніку перастаноўкі электрычнага і магнітнага палёў[51]:  ,  .

Поўная сістэма ўраўненняў Максвела ў каварыянтнай форме мае выгляд:

СГС
СІ
 
 
 
 

Па індэксу  , які ўваходзіць у формулу двойчы, праводзіцца сумаванне ад 0 да 3, а ў правай частцы другога ўраўнення знаходзіцца 4-вектар току. Нулявая кампанента гэтага ўраўнення адпавядае закону Гауса, а прасторавыя — закону Ампера — Максвела.

Пры дапамозе тэнзара электрамагнітнага поля можна атрымаць законы пераўтварэнняў кампанент электрычнага і магнітнага палёў пры іх вымярэнні адносна розных інерцыяльных сістэм адліку[52][53]:

СГС
СІ
 
 
 
 

дзе «штрыхаваныя» велічыні вымяраюцца адносна сістэмы адліку, якая рухаецца ўздоўж восі  , з хуткасцю  , адносна сістэмы, у якой вымяраюцца «не штрыхаваныя» кампаненты палёў, а   — множнік ​​Лорэнца. Кампаненты палёў уздоўж напрамку адноснага руху інерцыяльных сістэм адліку застаюцца нязменнымі:  .

Ураўненні Максвела ў вакууме інварыянтныя адносна пераўтварэнняў Лорэнца. Гэта паслужыла адным са штуршкоў да стварэння спецыяльнай тэорыі адноснасці.

Электрычнае і магнітнае палі розным чынам змяняюцца пры інверсіі восей прасторавай сістэмы каардынат. Электрычнае поле з’яўляецца палярным вектарам, а магнітнае — аксіяльным вектарам. Можна пабудаваць дзве інварыянтныя адносна пераўтварэнняў Лорэнца велічыні:

 

Першы інварыянт з’яўляецца скалярам, а другі — псеўдаскалярам, гэта значыць змяняе свой ​​знак пры інверсіі каардынатных восей.

Лагранжыян

правіць

Дзеянне   і лагранжыян (функцыя Лагранжа)   для пробнага зараду, які рухаецца ў вонкавым электрамагнітным полі ў сістэме СГС і СІ маюць выгляд[54][55]:

СГС
СІ
 
 
 
 

дзе:

  •   — маса часціцы (у адзінках СІ — кг);
  •   — яе хуткасць (у адзінках СІ — м/с);
  •   — зарад часціцы (у адзінках СІ — Кл);
  •   — 4-х інтэрвал.

Ураўненні руху зараду пад уздзеяннем сілы Лорэнца ў каварыянтным запісе маюць выгляд:

СГС
СІ
 
 

Ураўненні Максвела атрымліваюцца з прынцыпу найменшага дзеяння, у якім дынамічнымі зменнымі з’яўляюцца 4-х патэнцыялы электрамагнітнага поля  . Пры гэтым выкарыстоўваецца наступны каварыянтны выраз для дзеяння[55][56]:

СГС
СІ
 
 

дзе інтэграванне ажыццяўляецца па інварыянтным 4-аб’ёме  .

Запіс пры дапамозе дыферэнцыяльных форм

правіць

Ураўненні Максвела ў каварыянтнай форме, як і вектарнае прадстаўленне ў трохмернай прасторы, можна запісаць у «бязіндэкснай форме». Для гэтага ўводзіцца аперацыя вонкавага здабытку  , якая мае ўласцівасць антысіметрычнасці  . Вонкавы здабытак дазваляе запісваць згорнутыя па ўсіх індэксах выразы з антысіметрычнымі тэнзарамі, такімі як  . Пры гэтым узнікаюць аб’екты, якія называюцца дыферэнцыяльнымі формамі (ці проста формамі)[57]. 1-форма патэнцыялу поля вызначаецца наступным чынам (па індэксу   — сума ад 0 да 3):

 

З 1-формы, пры дапамозе аперацыі вокавага дыферэнцыявання  , атрымліваецца 2-форма электрамагнітнага поля (ці 2-форма Фарадэя):

 

Аперацыя вонкавага дыферэнцыявання мае ўласцівасць  , што прыводзіць да закона Гауса для магнітнага поля і закону Фарадэя:

 

Для запісу астатніх ураўненняў Максвела ўводзіцца дуальная да   2-форма  , якая таксама называецца 2-формай Максвела[58]:

 

і 3-форма току:

 

дзе   — абсалютны антысіметрычны сімвал Леві-Чывіты ( ). Згортка з сімвалам Леві-Чывіты вонкавага здабытку дыферэнцыялаў называецца аператарам зоркі Ходжа.

У гэтых абазначэннях ураўненні Максвелла ў сістэмах СГС і СІ прымаюць наступны выгляд[59]:

СГС
СІ